# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn from pytorch_lightning.utilities.memory import get_model_size_mb, recursive_detach from tests.helpers import BoringModel def test_recursive_detach(): device = "cuda" if torch.cuda.is_available() else "cpu" x = {"foo": torch.tensor(0, device=device), "bar": {"baz": torch.tensor(1.0, device=device, requires_grad=True)}} y = recursive_detach(x, to_cpu=True) assert x["foo"].device.type == device assert x["bar"]["baz"].device.type == device assert x["bar"]["baz"].requires_grad assert y["foo"].device.type == "cpu" assert y["bar"]["baz"].device.type == "cpu" assert not y["bar"]["baz"].requires_grad def test_get_model_size_mb(): model = BoringModel() size_bytes = get_model_size_mb(model) # Size will be python version dependent. assert math.isclose(size_bytes, 0.001319, rel_tol=0.1) def test_get_sparse_model_size_mb(): class BoringSparseModel(BoringModel): def __init__(self): super().__init__() self.layer = nn.Parameter(torch.ones(32).to_sparse()) model = BoringSparseModel() size_bytes = get_model_size_mb(model) assert math.isclose(size_bytes, 0.001511, rel_tol=0.1)