# Docker images ## Build images from Dockerfiles You can build it on your own, note it takes lots of time, be prepared. ```bash git clone https://github.com/Lightning-AI/lightning.git # build with the default arguments docker image build -t pytorch-lightning:latest -f dockers/base-cuda/Dockerfile . # build with specific arguments docker image build -t pytorch-lightning:base-cuda-py3.9-torch1.13-cuda11.7.1 -f dockers/base-cuda/Dockerfile --build-arg PYTHON_VERSION=3.9 --build-arg PYTORCH_VERSION=1.13 --build-arg CUDA_VERSION=11.7.1 . ``` To run your docker use ```bash docker image list docker run --rm -it pytorch-lightning:latest bash ``` and if you do not need it anymore, just clean it: ```bash docker image list docker image rm pytorch-lightning:latest ``` ## Run docker image with GPUs To run docker image with access to your GPUs, you need to install ```bash # Add the package repositories distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker ``` and later run the docker image with `--gpus all`. For example, ``` docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.12-cuda11.7.1 ``` ## Run Jupyter server 1. Build the docker image: ```bash docker image build -t pytorch-lightning:v1.6.5 -f dockers/nvidia/Dockerfile --build-arg LIGHTNING_VERSION=1.6.5 . ``` 1. start the server and map ports: ```bash docker run --rm -it --gpus=all -p 8888:8888 pytorch-lightning:v1.6.5 ``` 1. Connect in local browser: - copy the generated path e.g. `http://hostname:8888/?token=0719fa7e1729778b0cec363541a608d5003e26d4910983c6` - replace the `hostname` by `localhost`