# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest.mock import patch import numpy as np import onnxruntime import pytest import torch import tests_pytorch.helpers.pipelines as tpipes from pytorch_lightning import Trainer from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_12 from tests_pytorch.helpers.runif import RunIf from tests_pytorch.utilities.test_model_summary import UnorderedModel def test_model_saves_with_input_sample(tmpdir): """Test that ONNX model saves with input sample and size is greater than 3 MB.""" model = BoringModel() trainer = Trainer(fast_dev_run=True) trainer.fit(model) file_path = os.path.join(tmpdir, "model.onnx") input_sample = torch.randn((1, 32)) model.to_onnx(file_path, input_sample) assert os.path.isfile(file_path) assert os.path.getsize(file_path) > 4e2 @pytest.mark.parametrize( "accelerator", [pytest.param("mps", marks=RunIf(mps=True)), pytest.param("gpu", marks=RunIf(min_cuda_gpus=True))] ) def test_model_saves_on_gpu(tmpdir, accelerator): """Test that model saves on gpu.""" model = BoringModel() trainer = Trainer(accelerator=accelerator, devices=1, fast_dev_run=True) trainer.fit(model) file_path = os.path.join(tmpdir, "model.onnx") input_sample = torch.randn((1, 32)) model.to_onnx(file_path, input_sample) assert os.path.isfile(file_path) assert os.path.getsize(file_path) > 4e2 @pytest.mark.parametrize( ["modelclass", "input_sample"], [ (BoringModel, torch.randn(1, 32)), (UnorderedModel, (torch.rand(2, 3), torch.rand(2, 10))), ], ) def test_model_saves_with_example_input_array(tmpdir, modelclass, input_sample): """Test that ONNX model saves with example_input_array and size is greater than 3 MB.""" model = modelclass() model.example_input_array = input_sample file_path = os.path.join(tmpdir, "model.onnx") model.to_onnx(file_path) assert os.path.exists(file_path) is True assert os.path.getsize(file_path) > 4e2 @RunIf(min_cuda_gpus=2) def test_model_saves_on_multi_gpu(tmpdir): """Test that ONNX model saves on a distributed backend.""" trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=10, limit_val_batches=10, accelerator="gpu", devices=[0, 1], strategy="ddp_spawn", enable_progress_bar=False, ) model = BoringModel() model.example_input_array = torch.randn(5, 32) tpipes.run_model_test(trainer_options, model, min_acc=0.08) file_path = os.path.join(tmpdir, "model.onnx") model.to_onnx(file_path) assert os.path.exists(file_path) is True def test_verbose_param(tmpdir, capsys): """Test that output is present when verbose parameter is set.""" model = BoringModel() model.example_input_array = torch.randn(5, 32) file_path = os.path.join(tmpdir, "model.onnx") if _TORCH_GREATER_EQUAL_1_12: with patch("torch.onnx.log", autospec=True) as test: model.to_onnx(file_path, verbose=True) args, kwargs = test.call_args prefix, graph = args assert prefix == "Exported graph: " else: model.to_onnx(file_path, verbose=True) captured = capsys.readouterr() assert "graph(%" in captured.out def test_error_if_no_input(tmpdir): """Test that an error is thrown when there is no input tensor.""" model = BoringModel() model.example_input_array = None file_path = os.path.join(tmpdir, "model.onnx") with pytest.raises( ValueError, match=r"Could not export to ONNX since neither `input_sample` nor" r" `model.example_input_array` attribute is set.", ): model.to_onnx(file_path) def test_if_inference_output_is_valid(tmpdir): """Test that the output inferred from ONNX model is same as from PyTorch.""" model = BoringModel() model.example_input_array = torch.randn(5, 32) trainer = Trainer(fast_dev_run=True) trainer.fit(model) model.eval() with torch.no_grad(): torch_out = model(model.example_input_array) file_path = os.path.join(tmpdir, "model.onnx") model.to_onnx(file_path, model.example_input_array, export_params=True) ort_session = onnxruntime.InferenceSession(file_path) def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() # compute ONNX Runtime output prediction ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(model.example_input_array)} ort_outs = ort_session.run(None, ort_inputs) # compare ONNX Runtime and PyTorch results assert np.allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)