# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import namedtuple from unittest import mock from unittest.mock import patch import pytest import torch import tests_pytorch.helpers.pipelines as tpipes from lightning_lite.plugins.environments import TorchElasticEnvironment from lightning_lite.utilities.device_parser import _parse_gpu_ids from pytorch_lightning import Trainer from pytorch_lightning.accelerators import CPUAccelerator, CUDAAccelerator from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests_pytorch.helpers.datamodules import ClassifDataModule from tests_pytorch.helpers.runif import RunIf from tests_pytorch.helpers.simple_models import ClassificationModel PRETEND_N_OF_GPUS = 16 @RunIf(min_cuda_gpus=2, sklearn=True) def test_multi_gpu_none_backend(tmpdir): """Make sure when using multiple GPUs the user can't use `accelerator = None`.""" trainer_options = dict( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, limit_train_batches=0.2, limit_val_batches=0.2, accelerator="gpu", devices=2, ) dm = ClassifDataModule() model = ClassificationModel() tpipes.run_model_test(trainer_options, model, dm) @RunIf(min_cuda_gpus=2) @pytest.mark.parametrize("devices", [1, [0], [1]]) def test_single_gpu_model(tmpdir, devices): """Make sure single GPU works (DP mode).""" trainer_options = dict( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, accelerator="gpu", devices=devices, ) model = BoringModel() tpipes.run_model_test(trainer_options, model) @pytest.mark.parametrize( "devices", [ 1, 3, 3, [1, 2], [0, 1], -1, "-1", ], ) def test_root_gpu_property_0_raising(mps_count_0, cuda_count_0, devices): """Test that asking for a GPU when none are available will result in a MisconfigurationException.""" with pytest.raises(MisconfigurationException, match="No supported gpu backend found!"): Trainer(accelerator="gpu", devices=devices, strategy="ddp") @mock.patch.dict( os.environ, { "CUDA_VISIBLE_DEVICES": "0", "LOCAL_RANK": "1", "GROUP_RANK": "1", "RANK": "3", "WORLD_SIZE": "4", "LOCAL_WORLD_SIZE": "2", "TORCHELASTIC_RUN_ID": "1", }, ) @pytest.mark.parametrize("gpus", [[0, 1, 2], 2, "0", [0, 2]]) def test_torchelastic_gpu_parsing(cuda_count_1, gpus): """Ensure when using torchelastic and nproc_per_node is set to the default of 1 per GPU device That we omit sanitizing the gpus as only one of the GPUs is visible.""" with pytest.deprecated_call(match=r"is deprecated in v1.7 and will be removed in v2.0."): trainer = Trainer(gpus=gpus) assert isinstance(trainer._accelerator_connector.cluster_environment, TorchElasticEnvironment) # when use gpu if _parse_gpu_ids(gpus, include_cuda=True) is not None: assert isinstance(trainer.accelerator, CUDAAccelerator) assert trainer.num_devices == len(gpus) if isinstance(gpus, list) else gpus assert trainer.device_ids == _parse_gpu_ids(gpus, include_cuda=True) # fall back to cpu else: assert isinstance(trainer.accelerator, CPUAccelerator) assert trainer.num_devices == 1 assert trainer.device_ids == [0] @RunIf(min_cuda_gpus=1) def test_single_gpu_batch_parse(): trainer = Trainer(accelerator="gpu", devices=1) # non-transferrable types primitive_objects = [None, {}, [], 1.0, "x", [None, 2], {"x": (1, 2), "y": None}] for batch in primitive_objects: data = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) assert data == batch # batch is just a tensor batch = torch.rand(2, 3) batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) assert batch.device.index == 0 and batch.type() == "torch.cuda.FloatTensor" # tensor list batch = [torch.rand(2, 3), torch.rand(2, 3)] batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) assert batch[0].device.index == 0 and batch[0].type() == "torch.cuda.FloatTensor" assert batch[1].device.index == 0 and batch[1].type() == "torch.cuda.FloatTensor" # tensor list of lists batch = [[torch.rand(2, 3), torch.rand(2, 3)]] batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor" assert batch[0][1].device.index == 0 and batch[0][1].type() == "torch.cuda.FloatTensor" # tensor dict batch = [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)}] batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) assert batch[0]["a"].device.index == 0 and batch[0]["a"].type() == "torch.cuda.FloatTensor" assert batch[0]["b"].device.index == 0 and batch[0]["b"].type() == "torch.cuda.FloatTensor" # tuple of tensor list and list of tensor dict batch = ([torch.rand(2, 3) for _ in range(2)], [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)} for _ in range(2)]) batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor" assert batch[1][0]["a"].device.index == 0 assert batch[1][0]["a"].type() == "torch.cuda.FloatTensor" assert batch[1][0]["b"].device.index == 0 assert batch[1][0]["b"].type() == "torch.cuda.FloatTensor" # namedtuple of tensor BatchType = namedtuple("BatchType", ["a", "b"]) batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)] batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) assert batch[0].a.device.index == 0 assert batch[0].a.type() == "torch.cuda.FloatTensor" # non-Tensor that has `.to()` defined class CustomBatchType: def __init__(self): self.a = torch.rand(2, 2) def to(self, *args, **kwargs): self.a = self.a.to(*args, **kwargs) return self batch = trainer.strategy.batch_to_device(CustomBatchType(), torch.device("cuda:0")) assert batch.a.type() == "torch.cuda.FloatTensor" @RunIf(min_cuda_gpus=1) def test_non_blocking(): """Tests that non_blocking=True only gets passed on torch.Tensor.to, but not on other objects.""" trainer = Trainer() batch = torch.zeros(2, 3) with patch.object(batch, "to", wraps=batch.to) as mocked: batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) mocked.assert_called_with(torch.device("cuda", 0), non_blocking=True) class BatchObject: def to(self, *args, **kwargs): pass batch = BatchObject() with patch.object(batch, "to", wraps=batch.to) as mocked: batch = trainer.strategy.batch_to_device(batch, torch.device("cuda:0")) mocked.assert_called_with(torch.device("cuda", 0))