import pytest from pytorch_lightning import Trainer, Callback from pytorch_lightning.trainer.states import TrainerState, trainer_state from tests.base import EvalModelTemplate class StateSnapshotCallback(Callback): """ Allows to shapshot the state inside a particular trainer method. """ def __init__(self, snapshot_method: str): super().__init__() assert snapshot_method in ['on_batch_start', 'on_test_batch_start'] self.snapshot_method = snapshot_method self.trainer_state = None def on_batch_start(self, trainer, pl_module): if self.snapshot_method == 'on_batch_start': self.trainer_state = trainer.state def on_test_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx): if self.snapshot_method == 'on_test_batch_start': self.trainer_state = trainer.state def test_state_decorator_nothing_passed(tmpdir): """ Test that state is not changed if nothing is passed to a decorator""" @trainer_state() def test_method(self): return self.state trainer = Trainer(default_root_dir=tmpdir) trainer.state = TrainerState.INITIALIZING snapshot_state = test_method(trainer) assert snapshot_state == TrainerState.INITIALIZING assert trainer.state == TrainerState.INITIALIZING def test_state_decorator_entering_only(tmpdir): """ Tests that state is set to entering inside a run function and restored to the previous value after. """ @trainer_state(entering=TrainerState.RUNNING) def test_method(self): return self.state trainer = Trainer(default_root_dir=tmpdir) trainer.state = TrainerState.INITIALIZING snapshot_state = test_method(trainer) assert snapshot_state == TrainerState.RUNNING assert trainer.state == TrainerState.INITIALIZING def test_state_decorator_exiting_only(tmpdir): """ Tests that state is not changed inside a run function and set to `exiting` after. """ @trainer_state(exiting=TrainerState.FINISHED) def test_method(self): return self.state trainer = Trainer(default_root_dir=tmpdir) trainer.state = TrainerState.INITIALIZING snapshot_state = test_method(trainer) assert snapshot_state == TrainerState.INITIALIZING assert trainer.state == TrainerState.FINISHED def test_state_decorator_entering_and_exiting(tmpdir): """ Tests that state is set to `entering` inside a run function and set ot `exiting` after. """ @trainer_state(entering=TrainerState.RUNNING, exiting=TrainerState.FINISHED) def test_method(self): return self.state trainer = Trainer(default_root_dir=tmpdir) trainer.state = TrainerState.INITIALIZING snapshot_state = test_method(trainer) assert snapshot_state == TrainerState.RUNNING assert trainer.state == TrainerState.FINISHED def test_state_decorator_interrupt(tmpdir): """ Tests that state remains `INTERRUPTED` is its set in run function. """ @trainer_state(exiting=TrainerState.FINISHED) def test_method(self): self.state = TrainerState.INTERRUPTED trainer = Trainer(default_root_dir=tmpdir) trainer.state = TrainerState.INITIALIZING test_method(trainer) assert trainer.state == TrainerState.INTERRUPTED def test_initialize_state(tmpdir): """ Tests that state is INITIALIZE after Trainer creation """ trainer = Trainer(default_root_dir=tmpdir) assert trainer.state == TrainerState.INITIALIZING @pytest.mark.parametrize("extra_params", [ pytest.param(dict(fast_dev_run=True), id='Fast-Run'), pytest.param(dict(max_steps=1), id='Single-Step'), ]) def test_running_state_during_fit(tmpdir, extra_params): """ Tests that state is set to RUNNING during fit """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) snapshot_callback = StateSnapshotCallback(snapshot_method='on_batch_start') trainer = Trainer( callbacks=[snapshot_callback], default_root_dir=tmpdir, **extra_params ) trainer.fit(model) assert snapshot_callback.trainer_state == TrainerState.RUNNING @pytest.mark.parametrize("extra_params", [ pytest.param(dict(fast_dev_run=True), id='Fast-Run'), pytest.param(dict(max_steps=1), id='Single-Step'), ]) def test_finished_state_after_fit(tmpdir, extra_params): """ Tests that state is FINISHED after fit """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) trainer = Trainer( default_root_dir=tmpdir, **extra_params ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED def test_running_state_during_test(tmpdir): """ Tests that state is set to RUNNING during test """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) snapshot_callback = StateSnapshotCallback(snapshot_method='on_test_batch_start') trainer = Trainer( callbacks=[snapshot_callback], default_root_dir=tmpdir, fast_dev_run=True, ) trainer.test(model) assert snapshot_callback.trainer_state == TrainerState.RUNNING def test_finished_state_after_test(tmpdir): """ Tests that state is FINISHED after fit """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, ) trainer.test(model) assert trainer.state == TrainerState.FINISHED @pytest.mark.parametrize("extra_params", [ pytest.param(dict(fast_dev_run=True), id='Fast-Run'), pytest.param(dict(max_steps=1), id='Single-Step'), ]) def test_interrupt_state_on_keyboard_interrupt(tmpdir, extra_params): """ Tests that state is set to INTERRUPTED on KeyboardInterrupt """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) class InterruptCallback(Callback): def __init__(self): super().__init__() def on_batch_start(self, trainer, pl_module): raise KeyboardInterrupt trainer = Trainer( callbacks=[InterruptCallback()], default_root_dir=tmpdir, **extra_params ) trainer.fit(model) assert trainer.state == TrainerState.INTERRUPTED