.. _checkpointing_advanced: ################################## Cloud-based checkpoints (advanced) ################################## ***************** Cloud checkpoints ***************** Lightning is integrated with the major remote file systems including local filesystems and several cloud storage providers such as `S3 `_ on `AWS `_, `GCS `_ on `Google Cloud `_, or `ADL `_ on `Azure `_. PyTorch Lightning uses `fsspec `_ internally to handle all filesystem operations. ---- Save a cloud checkpoint ======================= To save to a remote filesystem, prepend a protocol like "s3:/" to the root_dir used for writing and reading model data. .. code-block:: python # `default_root_dir` is the default path used for logs and checkpoints trainer = Trainer(default_root_dir="s3://my_bucket/data/") trainer.fit(model) ---- Resume training from a cloud checkpoint ======================================= To resume training from a cloud checkpoint use a cloud url. .. code-block:: python trainer = Trainer(default_root_dir=tmpdir, max_steps=3) trainer.fit(model, ckpt_path="s3://my_bucket/ckpts/classifier.ckpt") PyTorch Lightning uses `fsspec `_ internally to handle all filesystem operations.