.. _checkpointing_advanced:
##################################
Cloud-based checkpoints (advanced)
##################################
*****************
Cloud checkpoints
*****************
Lightning is integrated with the major remote file systems including local filesystems and several cloud storage providers such as
`S3 `_ on `AWS `_, `GCS `_ on `Google Cloud `_,
or `ADL `_ on `Azure `_.
PyTorch Lightning uses `fsspec `_ internally to handle all filesystem operations.
----
Save a cloud checkpoint
=======================
To save to a remote filesystem, prepend a protocol like "s3:/" to the root_dir used for writing and reading model data.
.. code-block:: python
# `default_root_dir` is the default path used for logs and checkpoints
trainer = Trainer(default_root_dir="s3://my_bucket/data/")
trainer.fit(model)
----
Resume training from a cloud checkpoint
=======================================
To resume training from a cloud checkpoint use a cloud url.
.. code-block:: python
trainer = Trainer(default_root_dir=tmpdir, max_steps=3)
trainer.fit(model, ckpt_path="s3://my_bucket/ckpts/classifier.ckpt")
PyTorch Lightning uses `fsspec `_ internally to handle all filesystem operations.