Quick start • Examples • PyTorch Lightning • Fabric • Lightning AI • Community • Docs
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/) [![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning) [![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning) [![Conda](https://img.shields.io/conda/v/conda-forge/lightning?label=conda&color=success)](https://anaconda.org/conda-forge/lightning) [![codecov](https://codecov.io/gh/Lightning-AI/pytorch-lightning/graph/badge.svg?token=SmzX8mnKlA)](https://codecov.io/gh/Lightning-AI/pytorch-lightning) [![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa) ![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lightning-ai/lightning) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lightning/blob/master/LICENSE)What to change | Resulting Fabric Code (copy me!) |
---|---|
```diff + import lightning as L import torch; import torchvision as tv dataset = tv.datasets.CIFAR10("data", download=True, train=True, transform=tv.transforms.ToTensor()) + fabric = L.Fabric() + fabric.launch() model = tv.models.resnet18() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) - device = "cuda" if torch.cuda.is_available() else "cpu" - model.to(device) + model, optimizer = fabric.setup(model, optimizer) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) + dataloader = fabric.setup_dataloaders(dataloader) model.train() num_epochs = 10 for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch - inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, labels) - loss.backward() + fabric.backward(loss) optimizer.step() print(loss.data) ``` | ```Python import lightning as L import torch; import torchvision as tv dataset = tv.datasets.CIFAR10("data", download=True, train=True, transform=tv.transforms.ToTensor()) fabric = L.Fabric() fabric.launch() model = tv.models.resnet18() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) model, optimizer = fabric.setup(model, optimizer) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) dataloader = fabric.setup_dataloaders(dataloader) model.train() num_epochs = 10 for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch optimizer.zero_grad() outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, labels) fabric.backward(loss) optimizer.step() print(loss.data) ``` |