# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod from typing import Sequence from torch.utils.data import DataLoader from pytorch_lightning.loops.base import Loop class DataLoaderLoop(Loop): """Base class to loop over all dataloaders""" @property @abstractmethod def dataloaders(self) -> Sequence[DataLoader]: """Returns the dataloaders to loop over""" @property def current_dataloader_idx(self) -> int: """Returns the index of the current dataloader""" return self.iteration_count @property def current_dataloader(self) -> DataLoader: """Returns the current dataloader""" return self.dataloaders[self.current_dataloader_idx] @property def num_dataloaders(self) -> int: """Returns the number of dataloaders present""" return len(self.dataloaders) if self.dataloaders is not None else 0 @property def done(self) -> bool: """Returns whether all dataloaders have been processed""" return self.current_dataloader_idx >= self.num_dataloaders def reset(self) -> None: """Resets the internal state""" self.iteration_count = 0