# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union from pytorch_lightning.loggers.base import DummyLogger from pytorch_lightning.utilities import rank_zero_info from pytorch_lightning.utilities.exceptions import MisconfigurationException class DebuggingConnector: def __init__(self, trainer): self.trainer = trainer def on_init_start( self, limit_train_batches, limit_val_batches, limit_test_batches, limit_predict_batches, val_check_interval, overfit_batches, fast_dev_run, ): if not isinstance(fast_dev_run, (bool, int)): raise MisconfigurationException( f'fast_dev_run={fast_dev_run} is not a valid configuration.' ' It should be either a bool or an int >= 0' ) if isinstance(fast_dev_run, int) and (fast_dev_run < 0): raise MisconfigurationException( f'fast_dev_run={fast_dev_run} is not a' ' valid configuration. It should be >= 0.' ) self.trainer.fast_dev_run = fast_dev_run fast_dev_run = int(fast_dev_run) # set fast_dev_run=True when it is 1, used while logging if fast_dev_run == 1: self.trainer.fast_dev_run = True if fast_dev_run: limit_train_batches = fast_dev_run limit_val_batches = fast_dev_run limit_test_batches = fast_dev_run limit_predict_batches = fast_dev_run self.trainer.train_loop.max_steps = fast_dev_run self.trainer.num_sanity_val_steps = 0 self.trainer.train_loop.max_epochs = 1 val_check_interval = 1.0 self.trainer.check_val_every_n_epoch = 1 self.trainer.logger = DummyLogger() rank_zero_info( 'Running in fast_dev_run mode: will run a full train,' f' val, test and prediction loop using {fast_dev_run} batch(es).' ) self.trainer.limit_train_batches = _determine_batch_limits(limit_train_batches, 'limit_train_batches') self.trainer.limit_val_batches = _determine_batch_limits(limit_val_batches, 'limit_val_batches') self.trainer.limit_test_batches = _determine_batch_limits(limit_test_batches, 'limit_test_batches') self.trainer.limit_predict_batches = _determine_batch_limits(limit_predict_batches, 'limit_predict_batches') self.trainer.val_check_interval = _determine_batch_limits(val_check_interval, 'val_check_interval') self.trainer.overfit_batches = _determine_batch_limits(overfit_batches, 'overfit_batches') self.determine_data_use_amount(self.trainer.overfit_batches) def determine_data_use_amount(self, overfit_batches: float) -> None: """Use less data for debugging purposes""" if overfit_batches > 0: self.trainer.limit_train_batches = overfit_batches self.trainer.limit_val_batches = overfit_batches self.trainer.limit_test_batches = overfit_batches def _determine_batch_limits(batches: Union[int, float], name: str) -> Union[int, float]: if 0 <= batches <= 1: return batches elif batches > 1 and batches % 1.0 == 0: return int(batches) else: raise MisconfigurationException( f'You have passed invalid value {batches} for {name}, it has to be in [0.0, 1.0] or an int.' )