from pytorch_lightning.callbacks import Callback from tests.base.boring_model import BoringModel from pytorch_lightning import Trainer import pytest import os from unittest import mock from pytorch_lightning.plugins.native_amp import NativeAMPPlugin from distutils.version import LooseVersion import torch @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Minimal PT version is set to 1.6", ) @mock.patch.dict(os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0" }) @mock.patch('torch.cuda.device_count', return_value=2) @pytest.mark.parametrize(['ddp_backend', 'gpus', 'num_processes'], [('ddp_cpu', None, None), ('ddp', 2, 0), ('ddp2', 2, 0), ('ddp_spawn', 2, 0)]) def test_amp_choice_default_ddp_cpu(tmpdir, ddp_backend, gpus, num_processes): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert isinstance(trainer.precision_connector.backend, NativeAMPPlugin) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, precision=16, amp_backend='native', gpus=gpus, num_processes=num_processes, distributed_backend=ddp_backend, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Minimal PT version is set to 1.6", ) @mock.patch.dict(os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0" }) @mock.patch('torch.cuda.device_count', return_value=2) @pytest.mark.parametrize(['ddp_backend', 'gpus', 'num_processes'], [('ddp_cpu', None, None), ('ddp', 2, 0), ('ddp2', 2, 0), ('ddp_spawn', 2, 0)]) def test_amp_choice_custom_ddp_cpu(tmpdir, ddp_backend, gpus, num_processes): class MyNativeAMP(NativeAMPPlugin): pass class CB(Callback): def on_fit_start(self, trainer, pl_module): assert isinstance(trainer.precision_connector.backend, MyNativeAMP) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, precision=16, amp_backend='native', gpus=gpus, num_processes=num_processes, distributed_backend=ddp_backend, plugins=[MyNativeAMP()], callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) class GradientUnscaleBoringModel(BoringModel): def on_after_backward(self): norm = torch.nn.utils.clip_grad_norm_(self.parameters(), 2) if not (torch.isinf(norm) or torch.isnan(norm)): assert norm.item() < 15. @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Minimal PT version is set to 1.6") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_amp_gradient_unscale(tmpdir): model = GradientUnscaleBoringModel() trainer = Trainer( max_epochs=2, default_root_dir=os.getcwd(), limit_train_batches=2, limit_test_batches=2, limit_val_batches=2, amp_backend='native', distributed_backend='ddp_spawn', gpus=2, precision=16, track_grad_norm=2, log_every_n_steps=1 ) trainer.fit(model) class UnscaleAccumulateGradBatchesBoringModel(BoringModel): def on_after_backward(self): norm = torch.nn.utils.clip_grad_norm_(self.parameters(), 2) if not (torch.isinf(norm) or torch.isnan(norm)): assert norm.item() < 15. @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Minimal PT version is set to 1.6") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_amp_gradient_unscale_accumulate_grad_batches(tmpdir): model = UnscaleAccumulateGradBatchesBoringModel() trainer = Trainer( max_epochs=2, default_root_dir=os.getcwd(), limit_train_batches=2, limit_test_batches=2, limit_val_batches=2, amp_backend='native', distributed_backend='ddp_spawn', gpus=2, precision=16, track_grad_norm=2, log_every_n_steps=1, accumulate_grad_batches=2, ) trainer.fit(model)