# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Quantization ^^^^^^^^^^^^ """ import functools from typing import Any, Callable, Optional, Sequence, Union import torch from torch.quantization import QConfig import pytorch_lightning as pl from pytorch_lightning.callbacks.base import Callback from pytorch_lightning.utilities.exceptions import MisconfigurationException def wrap_qat_forward_context( quant_cb, model: "pl.LightningModule", func: Callable, trigger_condition: Optional[Union[Callable, int]] = None ) -> Callable: """ Decorator to wrap forward path as it is needed to quantize inputs and dequantize outputs for in/out compatibility Moreover this version has the (de)quantization conditional as it may not be needed for the training all the time """ # todo: consider using registering hook before/after forward @functools.wraps(func) def wrapper(data) -> Any: _is_func_true = isinstance(trigger_condition, Callable) and trigger_condition(model.trainer) _is_count_true = isinstance(trigger_condition, int) and quant_cb._forward_calls < trigger_condition _quant_run = trigger_condition is None or _is_func_true or _is_count_true # apply custom trigger if _quant_run: quant_cb._forward_calls += 1 data = model.quant(data) data = func(data) # apply custom trigger if _quant_run: data = model.dequant(data) return data return wrapper def wrap_quantize_forward_context(model: "pl.LightningModule", func: Callable) -> Callable: """ Decorator to wrap forward path as it is needed to quantize inputs and dequantize outputs for in/out compatibility """ # todo: consider using registering hook before/after forward @functools.wraps(func) def wrapper(data) -> Any: data = model.quant(data) data = func(data) data = model.dequant(data) return data return wrapper def _recursive_hasattr(obj: Any, attribs: str, state: bool = True) -> bool: """recursive check if model has some layers denoted with '.'""" if "." in attribs: attrib, attribs = attribs.split(".", 1) if hasattr(obj, attrib): return _recursive_hasattr(getattr(obj, attrib), attribs, state) return False return state and hasattr(obj, attribs) class QuantizationAwareTraining(Callback): """ Quantization allows speeding up inference and decreasing memory requirements by performing computations and storing tensors at lower bitwidths (such as INT8 or FLOAT16) than floating point precision. We use native PyTorch API so for more information see `Quantization `_. .. warning:: ``QuantizationAwareTraining`` is in beta and subject to change. Args: qconfig: quantization configuration: - 'fbgemm' for server inference. - 'qnnpack' for mobile inference. - a custom `torch.quantization.QConfig `_. observer_type: allows switching between ``MovingAverageMinMaxObserver`` as "average" (default) and ``HistogramObserver`` as "histogram" which is more computationally expensive. collect_quantization: count or custom function to collect quantization statistics: - ``None`` (deafult). The quantization observer is called in each module forward (useful for collecting extended statistic when useing image/data augmentation). - ``int``. Use to set a fixed number of calls, starting from the beginning. - ``Callable``. Custom function with single trainer argument. See this example to trigger only the last epoch: .. code-block:: python def custom_trigger_last(trainer): return trainer.current_epoch == (trainer.max_epochs - 1) QuantizationAwareTraining(collect_quantization=custom_trigger_last) modules_to_fuse: allows you fuse a few layers together as shown in `diagram `_ to find which layer types can be fused, check https://github.com/pytorch/pytorch/pull/43286. input_compatible: preserve quant/dequant layers. This allows to feat any input as to the original model, but break compatibility to torchscript and export with ``torch.save``. quantize_on_fit_end: perform the quantization in `on_fit_end`. Note that once converted, the model cannot be put in training mode again. """ OBSERVER_TYPES = ("histogram", "average") def __init__( self, qconfig: Union[str, QConfig] = "fbgemm", observer_type: str = "average", collect_quantization: Optional[Union[int, Callable]] = None, modules_to_fuse: Optional[Sequence] = None, input_compatible: bool = True, quantize_on_fit_end: bool = True, ) -> None: _valid_qconf_str = isinstance(qconfig, str) and qconfig in torch.backends.quantized.supported_engines if not isinstance(qconfig, QConfig) and not _valid_qconf_str: raise MisconfigurationException( f"Unsupported qconfig: f{qconfig}.\nTry one of defaults: {torch.backends.quantized.supported_engines}" ) self._qconfig = qconfig if observer_type not in self.OBSERVER_TYPES: raise MisconfigurationException( f'Unsupported observer type "{observer_type}", allowed are {self.OBSERVER_TYPES}.' ) self._observer_type = observer_type if collect_quantization is not None and not isinstance(collect_quantization, (int, Callable)): raise MisconfigurationException( f'Unsupported `collect_quantization` "{collect_quantization}", allowed are `int` or `Callable`.' ) self._collect_quantization = collect_quantization self.modules_to_fuse = modules_to_fuse self._input_compatible = input_compatible self._convert_on_fit_end = quantize_on_fit_end self._forward_calls = 0 def _check_feasible_fuse(self, model): if not self.modules_to_fuse: return False for group in self.modules_to_fuse: if not all(_recursive_hasattr(model, m) for m in group): raise MisconfigurationException( f"You have requested to fuse {group} but one or more of them is not your model attributes" ) return True def on_fit_start(self, trainer, pl_module): # QuantStub converts tensors from floating point to quantized pl_module.quant = torch.quantization.QuantStub() # DeQuantStub converts tensors from quantized to floating point pl_module.dequant = torch.quantization.DeQuantStub() # manually specify where tensors will be converted from quantized # to floating point in the quantized model self.__module_forward = pl_module.forward pl_module.forward = wrap_qat_forward_context( quant_cb=self, model=pl_module, func=pl_module.forward, trigger_condition=self._collect_quantization ) # attach a global qconfig, which contains information about what kind # of observers to attach. Use 'fbgemm' for server inference if isinstance(self._qconfig, str): if self._observer_type == "histogram": pl_module.qconfig = torch.quantization.get_default_qconfig(self._qconfig) elif self._observer_type == "average": pl_module.qconfig = torch.quantization.get_default_qat_qconfig(self._qconfig) elif isinstance(self._qconfig, QConfig): pl_module.qconfig = self._qconfig if self._check_feasible_fuse(pl_module): torch.quantization.fuse_modules(pl_module, self.modules_to_fuse, inplace=True) # Prepare the model for QAT. This inserts observers and fake_quants in # the model that will observe weight and activation tensors during calibration. torch.quantization.prepare_qat(pl_module, inplace=True) def on_fit_end(self, trainer, pl_module): if not self._convert_on_fit_end: pl_module.forward = self.__module_forward return pl_module.eval() # Convert the observed model to a quantized model. This does several things: # quantizes the weights, computes and stores the scale and bias value to be # used with each activation tensor, fuses modules where appropriate, # and replaces key operators with quantized implementations. torch.quantization.convert(pl_module, inplace=True) # check we shall preserve wrapper if self._input_compatible: pl_module.forward = wrap_quantize_forward_context(model=pl_module, func=self.__module_forward) else: pl_module.forward = self.__module_forward