# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import os import torch import torch.distributed as torch_distrib import subprocess import sys from os.path import abspath from time import sleep from typing import Optional import numpy as np from pytorch_lightning import _logger as log from pytorch_lightning.utilities.distributed import find_free_network_port from pytorch_lightning.accelerators.accelerator import Accelerator from pytorch_lightning.utilities.distributed import rank_zero_only from pytorch_lightning.utilities import AMPType from pytorch_lightning.utilities.seed import seed_everything from pytorch_lightning.distributed.dist import LightningDistributed from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.overrides.data_parallel import LightningDistributedDataParallel from torch.nn.parallel import DistributedDataParallel from typing import List try: from hydra.utils import to_absolute_path, get_original_cwd from hydra.core.hydra_config import HydraConfig except ImportError: HYDRA_AVAILABLE = False else: HYDRA_AVAILABLE = True class DDPAccelerator(Accelerator): def __init__(self, trainer, cluster_environment=None): super().__init__(trainer, cluster_environment) self.task_idx = None self._has_spawned_children = False self.interactive_ddp_procs = [] self.dist = LightningDistributed() self.nickname = 'ddp' def setup(self, model): # first track model self.trainer.model = model # start the other scripts if os.environ.get('PL_IN_DDP_SUBPROCESS', '0') != '1': self._call_children_scripts() # set the task idx self.task_idx = int(os.environ['PL_DDP_PID']) def _call_children_scripts(self): assert self.trainer.global_rank == 0 self._check_can_spawn_children() self._has_spawned_children = True os.environ['MASTER_ADDR'] = os.environ.get('MASTER_ADDR', '127.0.0.1') os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', str(find_free_network_port())) # allow the user to pass the node rank node_rank = '0' node_rank = os.environ.get('NODE_RANK', node_rank) node_rank = os.environ.get('GROUP_RANK', node_rank) os.environ['NODE_RANK'] = node_rank os.environ['LOCAL_RANK'] = '0' # when user is using hydra find the absolute path path_lib = abspath if not HYDRA_AVAILABLE else to_absolute_path # pull out the commands used to run the script and resolve the abs file path command = sys.argv try: full_path = path_lib(command[0]) except Exception as e: full_path = abspath(command[0]) command[0] = full_path # use the same python interpreter and actually running command = [sys.executable] + command # the visible devices tell us how many GPUs we want to use. # when the trainer script was called the device has already been scoped by the time # code reaches this point. so, to call the scripts, we need to leave cuda visible devices alone # but forward the GPUs selected via environment variables if self.trainer.data_parallel_device_ids is None: raise MisconfigurationException('you selected (distribute_backend = ddp) but did not set Trainer(gpus=?)') os.environ['PL_TRAINER_GPUS'] = ','.join([str(i) for i in self.trainer.data_parallel_device_ids]) os.environ['PL_IN_DDP_SUBPROCESS'] = '1' if self.trainer.logger is not None: os.environ['PL_EXP_VERSION'] = str(self.trainer.logger.version) gpu_ids = os.environ.get('CUDA_VISIBLE_DEVICES', '') if len(gpu_ids) == 1: gpu_ids = f'{gpu_ids},' num_gpus = max(1, len(gpu_ids.split(','))) os.environ['WORLD_SIZE'] = f'{num_gpus * self.trainer.num_nodes}' self.interactive_ddp_procs = [] for local_rank in range(1, self.trainer.num_processes): env_copy = os.environ.copy() env_copy['LOCAL_RANK'] = f'{local_rank}' env_copy['PL_DDP_PID'] = str(self.trainer.data_parallel_device_ids[local_rank]) # remove env var if global seed not set if os.environ.get('PL_GLOBAL_SEED') is None and 'PL_GLOBAL_SEED' in env_copy: del env_copy['PL_GLOBAL_SEED'] # start process # if hydra is available and initialized, make sure to set the cwd correctly cwd: Optional[str] = None if HYDRA_AVAILABLE: if HydraConfig.initialized(): cwd = get_original_cwd() proc = subprocess.Popen(command, env=env_copy, cwd=cwd) self.interactive_ddp_procs.append(proc) # starting all processes at once can cause issues # with dataloaders delay between 1-10 seconds delay = np.random.uniform(1, 5, 1)[0] sleep(delay) os.environ['PL_DDP_PID'] = str(0) def train(self): model = self.trainer.model results = self.ddp_train(process_idx=self.task_idx, model=model) if 'WORLD_SIZE' in os.environ: del os.environ['WORLD_SIZE'] return results def training_step(self, args): if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model(*args) else: output = self.trainer.model(*args) return output def validation_step(self, args): output = self.training_step(args) return output def test_step(self, args): output = self.training_step(args) return output def barrier(self, name: str = None): if torch_distrib.is_initialized(): torch_distrib.barrier() def _check_can_spawn_children(self): if self._has_spawned_children: raise RuntimeError( "You tried to run `.fit` or `.test` multiple times in the same script." " This is not supported in DDP mode, switch to `distributed_backend='ddp_spawn'` instead." ) def set_world_ranks(self, process_idx): self.trainer.local_rank = process_idx self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes def model_to_device(self, model, process_idx): self.trainer.root_gpu = process_idx torch.cuda.set_device(self.trainer.root_gpu) model.cuda(self.trainer.root_gpu) def get_device_ids(self): device_ids = [self.trainer.root_gpu] return device_ids def on_train_end(self): pass def early_stopping_should_stop(self, pl_module): stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device) torch_distrib.all_reduce(stop, op=torch_distrib.reduce_op.SUM) torch_distrib.barrier() should_stop = stop == self.trainer.world_size return should_stop def broadcast(self, obj, src=0): return self.dist.broadcast(obj) def ddp_train(self, process_idx, model): """ Entry point for ddp Args: process_idx: mp_queue: multiprocessing queue model: Returns: """ seed = os.environ.get("PL_GLOBAL_SEED") if seed is not None: seed_everything(int(seed)) # show progressbar only on progress_rank 0 if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None: self.trainer.progress_bar_callback.disable() # determine which process we are and world size self.set_world_ranks(process_idx) # set warning rank rank_zero_only.rank = self.trainer.global_rank # set up server using proc 0's ip address # try to init for 20 times at max in case ports are taken # where to store ip_table model.trainer = self.trainer self.init_ddp_connection( self.trainer.global_rank, self.trainer.world_size, self.trainer.is_slurm_managing_tasks ) # call setup after the ddp process has connected self.trainer.call_setup_hook(model) # on world_size=0 let everyone know training is starting if self.trainer.is_global_zero and not torch.distributed.is_initialized(): log.info('-' * 100) log.info(f'distributed_backend={self.trainer.distributed_backend}') log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes') log.info('-' * 100) # call sync_bn before .cuda(), configure_apex and configure_ddp if self.trainer.sync_batchnorm: model = self.configure_sync_batchnorm(model) # move the model to the correct device self.model_to_device(model, process_idx) # CHOOSE OPTIMIZER # allow for lr schedulers as well self.setup_optimizers(model) # set model properties before going into wrapper self.trainer.model_connector.copy_trainer_model_properties(model) # 16-bit model = self.trainer.precision_connector.connect(model) # device ids change depending on the DDP setup device_ids = self.get_device_ids() # allow user to configure ddp model = self.configure_ddp(model, device_ids) # set up training routine self.barrier('ddp_setup') self.trainer.train_loop.setup_training(model) # train or test results = self.train_or_test() # clean up memory torch.cuda.empty_cache() return results def configure_ddp( self, model: "LightningModule", device_ids: List[int] ) -> DistributedDataParallel: model = LightningDistributedDataParallel( model, device_ids=device_ids, find_unused_parameters=True ) return model def configure_sync_batchnorm(self, model: "LightningModule") -> "LightningModule": """ Add global batchnorm for a model spread across multiple GPUs and nodes. Override to synchronize batchnorm between specific process groups instead of the whole world or use a different sync_bn like `apex`'s version. Args: model: pointer to current :class:`LightningModule`. Return: LightningModule with batchnorm layers synchronized between process groups """ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model, process_group=None) return model