# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script will generate 2 traces: one for `training_step` and one for `validation_step`. The traces can be visualized in 2 ways: * With Chrome: 1. Open Chrome and copy/paste this url: `chrome://tracing/`. 2. Once tracing opens, click on `Load` at the top-right and load one of the generated traces. * With PyTorch Tensorboard Profiler (Instructions are here: https://github.com/pytorch/kineto/tree/master/tb_plugin) 1. pip install tensorboard torch-tb-profiler 2. tensorboard --logdir={FOLDER} """ import sys from os import path import torch import torchvision import torchvision.transforms as T from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule from pytorch_lightning.cli import LightningCLI from pytorch_lightning.profilers.pytorch import PyTorchProfiler from pytorch_lightning.utilities.model_helpers import get_torchvision_model DEFAULT_CMD_LINE = ( "fit", "--trainer.max_epochs=1", "--trainer.limit_train_batches=15", "--trainer.limit_val_batches=15", "--trainer.profiler=pytorch", "--trainer.accelerator=gpu", f"--trainer.devices={int(torch.cuda.is_available())}", ) DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") class ModelToProfile(LightningModule): def __init__(self, name: str = "resnet18", automatic_optimization: bool = True): super().__init__() self.model = get_torchvision_model(name, weights="DEFAULT") self.criterion = torch.nn.CrossEntropyLoss() self.automatic_optimization = automatic_optimization self.training_step = ( self.automatic_optimization_training_step if automatic_optimization else self.manual_optimization_training_step ) def automatic_optimization_training_step(self, batch, batch_idx): inputs, labels = batch outputs = self.model(inputs) loss = self.criterion(outputs, labels) self.log("train_loss", loss) return loss def manual_optimization_training_step(self, batch, batch_idx): opt = self.optimizers() opt.zero_grad() inputs, labels = batch outputs = self.model(inputs) loss = self.criterion(outputs, labels) self.log("train_loss", loss) self.manual_backward(loss) opt.step() def validation_step(self, batch, batch_idx): inputs, labels = batch outputs = self.model(inputs) loss = self.criterion(outputs, labels) self.log("val_loss", loss) def predict_step(self, batch, batch_idx, dataloader_idx: int = None): inputs = batch[0] return self.model(inputs) def configure_optimizers(self): return torch.optim.SGD(self.parameters(), lr=0.001, momentum=0.9) class CIFAR10DataModule(LightningDataModule): transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()]) def train_dataloader(self, *args, **kwargs): trainset = torchvision.datasets.CIFAR10(root=DATASETS_PATH, train=True, download=True, transform=self.transform) return torch.utils.data.DataLoader(trainset, batch_size=2, shuffle=True, num_workers=0) def val_dataloader(self, *args, **kwargs): valset = torchvision.datasets.CIFAR10(root=DATASETS_PATH, train=False, download=True, transform=self.transform) return torch.utils.data.DataLoader(valset, batch_size=2, shuffle=True, num_workers=0) def cli_main(): if len(sys.argv) == 1: sys.argv += DEFAULT_CMD_LINE LightningCLI( ModelToProfile, CIFAR10DataModule, save_config_overwrite=True, trainer_defaults={"profiler": PyTorchProfiler()} ) if __name__ == "__main__": cli_lightning_logo() cli_main()