# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from torch.utils.data import DataLoader, Dataset from pytorch_lightning import Trainer from tests.helpers.boring_model import BoringModel, RandomDataset class RandomFloatIntDataset(Dataset): def __init__(self, size, length): self.len = length self.float_data = torch.randn(length, size) self.int_data = torch.randint(10, (length, 1)) def __getitem__(self, index): return self.float_data[index], self.int_data[index] def __len__(self): return self.len class DoublePrecisionBoringModel(BoringModel): def training_step(self, batch, batch_idx): float_data, int_data = batch assert float_data.dtype == torch.float64 output = self(float_data) loss = self.loss(batch, output) return {"loss": loss} def validation_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self(batch) loss = self.loss(batch, output) return {"x": loss} def test_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self(batch) loss = self.loss(batch, output) return {"y": loss} def predict_step(self, batch, batch_idx, dataloader_idx=None): assert batch.dtype == torch.float64 return self(batch) def on_fit_start(self): assert self.layer.weight.dtype == torch.float64 def on_after_backward(self): assert self.layer.weight.grad.dtype == torch.float64 def train_dataloader(self): dataset = RandomFloatIntDataset(32, 64) assert dataset.float_data.dtype == torch.float32 # Don't start with double data return DataLoader(dataset) def predict_dataloader(self): return DataLoader(RandomDataset(32, 64)) class DoublePrecisionBoringModelNoForward(BoringModel): def training_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 loss = self.loss(batch, output) return {"loss": loss} def validation_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 loss = self.loss(batch, output) return {"x": loss} def test_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 loss = self.loss(batch, output) return {"y": loss} def predict_step(self, batch, batch_idx, dataloader_idx=None): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 return output def predict_dataloader(self): return DataLoader(RandomDataset(32, 64)) @pytest.mark.parametrize('boring_model', (DoublePrecisionBoringModel, DoublePrecisionBoringModelNoForward)) def test_double_precision(tmpdir, boring_model): model = boring_model() original_training_step = model.training_step trainer = Trainer( max_epochs=2, default_root_dir=tmpdir, fast_dev_run=2, precision=64, log_every_n_steps=1, ) trainer.fit(model) trainer.test(model) trainer.predict(model) assert model.training_step == original_training_step