# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import wraps from typing import Callable, Optional, Sequence, Tuple import torch from pytorch_lightning.metrics.functional.reduction import class_reduce, reduce from torch.nn import functional as F from pytorch_lightning.utilities import rank_zero_warn def to_onehot( tensor: torch.Tensor, num_classes: Optional[int] = None, ) -> torch.Tensor: """ Converts a dense label tensor to one-hot format Args: tensor: dense label tensor, with shape [N, d1, d2, ...] num_classes: number of classes C Output: A sparse label tensor with shape [N, C, d1, d2, ...] Example: >>> x = torch.tensor([1, 2, 3]) >>> to_onehot(x) tensor([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) """ if num_classes is None: num_classes = int(tensor.max().detach().item() + 1) dtype, device, shape = tensor.dtype, tensor.device, tensor.shape tensor_onehot = torch.zeros(shape[0], num_classes, *shape[1:], dtype=dtype, device=device) index = tensor.long().unsqueeze(1).expand_as(tensor_onehot) return tensor_onehot.scatter_(1, index, 1.0) def to_categorical( tensor: torch.Tensor, argmax_dim: int = 1 ) -> torch.Tensor: """ Converts a tensor of probabilities to a dense label tensor Args: tensor: probabilities to get the categorical label [N, d1, d2, ...] argmax_dim: dimension to apply Return: A tensor with categorical labels [N, d2, ...] Example: >>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]]) >>> to_categorical(x) tensor([1, 0]) """ return torch.argmax(tensor, dim=argmax_dim) def get_num_classes( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, ) -> int: """ Calculates the number of classes for a given prediction and target tensor. Args: pred: predicted values target: true labels num_classes: number of classes if known Return: An integer that represents the number of classes. """ num_target_classes = int(target.max().detach().item() + 1) num_pred_classes = int(pred.max().detach().item() + 1) num_all_classes = max(num_target_classes, num_pred_classes) if num_classes is None: num_classes = num_all_classes elif num_classes != num_all_classes: rank_zero_warn(f'You have set {num_classes} number of classes which is' f' different from predicted ({num_pred_classes}) and' f' target ({num_target_classes}) number of classes', RuntimeWarning) return num_classes def stat_scores( pred: torch.Tensor, target: torch.Tensor, class_index: int, argmax_dim: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Calculates the number of true positive, false positive, true negative and false negative for a specific class Args: pred: prediction tensor target: target tensor class_index: class to calculate over argmax_dim: if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over Return: True Positive, False Positive, True Negative, False Negative, Support Example: >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([0, 2, 3]) >>> tp, fp, tn, fn, sup = stat_scores(x, y, class_index=1) >>> tp, fp, tn, fn, sup (tensor(0), tensor(1), tensor(2), tensor(0), tensor(0)) """ if pred.ndim == target.ndim + 1: pred = to_categorical(pred, argmax_dim=argmax_dim) tp = ((pred == class_index) * (target == class_index)).to(torch.long).sum() fp = ((pred == class_index) * (target != class_index)).to(torch.long).sum() tn = ((pred != class_index) * (target != class_index)).to(torch.long).sum() fn = ((pred != class_index) * (target == class_index)).to(torch.long).sum() sup = (target == class_index).to(torch.long).sum() return tp, fp, tn, fn, sup def stat_scores_multiple_classes( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, argmax_dim: int = 1, reduction: str = 'none', ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Calculates the number of true positive, false positive, true negative and false negative for each class Args: pred: prediction tensor target: target tensor num_classes: number of classes if known argmax_dim: if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over reduction: a method to reduce metric score over labels (default: none) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements Return: True Positive, False Positive, True Negative, False Negative, Support Example: >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([0, 2, 3]) >>> tps, fps, tns, fns, sups = stat_scores_multiple_classes(x, y) >>> tps tensor([0., 0., 1., 1.]) >>> fps tensor([0., 1., 0., 0.]) >>> tns tensor([2., 2., 2., 2.]) >>> fns tensor([1., 0., 0., 0.]) >>> sups tensor([1., 0., 1., 1.]) """ if pred.ndim == target.ndim + 1: pred = to_categorical(pred, argmax_dim=argmax_dim) num_classes = get_num_classes(pred=pred, target=target, num_classes=num_classes) if pred.dtype != torch.bool: pred = pred.clamp_max(max=num_classes) if target.dtype != torch.bool: target = target.clamp_max(max=num_classes) possible_reductions = ('none', 'sum', 'elementwise_mean') if reduction not in possible_reductions: raise ValueError("reduction type %s not supported" % reduction) if reduction == 'none': pred = pred.view((-1, )).long() target = target.view((-1, )).long() tps = torch.zeros((num_classes + 1,), device=pred.device) fps = torch.zeros((num_classes + 1,), device=pred.device) tns = torch.zeros((num_classes + 1,), device=pred.device) fns = torch.zeros((num_classes + 1,), device=pred.device) sups = torch.zeros((num_classes + 1,), device=pred.device) match_true = (pred == target).float() match_false = 1 - match_true tps.scatter_add_(0, pred, match_true) fps.scatter_add_(0, pred, match_false) fns.scatter_add_(0, target, match_false) tns = pred.size(0) - (tps + fps + fns) sups.scatter_add_(0, target, torch.ones_like(match_true)) tps = tps[:num_classes] fps = fps[:num_classes] tns = tns[:num_classes] fns = fns[:num_classes] sups = sups[:num_classes] elif reduction == 'sum' or reduction == 'elementwise_mean': count_match_true = (pred == target).sum().float() oob_tp, oob_fp, oob_tn, oob_fn, oob_sup = stat_scores(pred, target, num_classes, argmax_dim) tps = count_match_true - oob_tp fps = pred.nelement() - count_match_true - oob_fp fns = pred.nelement() - count_match_true - oob_fn tns = pred.nelement() * (num_classes + 1) - (tps + fps + fns + oob_tn) sups = pred.nelement() - oob_sup.float() if reduction == 'elementwise_mean': tps /= num_classes fps /= num_classes fns /= num_classes tns /= num_classes sups /= num_classes return tps.float(), fps.float(), tns.float(), fns.float(), sups.float() def accuracy( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', return_state: bool = False ) -> torch.Tensor: """ Computes the accuracy classification score Args: pred: predicted labels target: ground truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: A Tensor with the accuracy score. Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> accuracy(x, y) tensor(0.7500) """ tps, fps, tns, fns, sups = stat_scores_multiple_classes( pred=pred, target=target, num_classes=num_classes) if return_state: return {'tps': tps, 'sups': sups} return class_reduce(tps, sups, sups, class_reduction=class_reduction) def _confmat_normalize(cm): """ Normalization function for confusion matrix """ cm = cm / cm.sum(-1, keepdim=True) nan_elements = cm[torch.isnan(cm)].nelement() if nan_elements != 0: cm[torch.isnan(cm)] = 0 rank_zero_warn(f'{nan_elements} nan values found in confusion matrix have been replaced with zeros.') return cm def confusion_matrix( pred: torch.Tensor, target: torch.Tensor, normalize: bool = False, num_classes: Optional[int] = None ) -> torch.Tensor: """ Computes the confusion matrix C where each entry C_{i,j} is the number of observations in group i that were predicted in group j. Args: pred: estimated targets target: ground truth labels normalize: normalizes confusion matrix num_classes: number of classes Return: Tensor, confusion matrix C [num_classes, num_classes ] Example: >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([0, 2, 3]) >>> confusion_matrix(x, y) tensor([[0., 1., 0., 0.], [0., 0., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) """ num_classes = get_num_classes(pred, target, num_classes) unique_labels = (target.view(-1) * num_classes + pred.view(-1)).to(torch.int) bins = torch.bincount(unique_labels, minlength=num_classes ** 2) cm = bins.reshape(num_classes, num_classes).squeeze().float() if normalize: cm = _confmat_normalize(cm) return cm def precision_recall( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', return_support: bool = False, return_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: """ Computes precision and recall for different thresholds Args: pred: estimated probabilities target: ground-truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class return_support: returns the support for each class, need for fbeta/f1 calculations return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: Tensor with precision and recall Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 2, 2, 2]) >>> precision_recall(x, y, class_reduction='macro') (tensor(0.5000), tensor(0.3333)) """ tps, fps, tns, fns, sups = stat_scores_multiple_classes(pred=pred, target=target, num_classes=num_classes) precision = class_reduce(tps, tps + fps, sups, class_reduction=class_reduction) recall = class_reduce(tps, tps + fns, sups, class_reduction=class_reduction) if return_state: return {'tps': tps, 'fps': fps, 'fns': fns, 'sups': sups} if return_support: return precision, recall, sups return precision, recall def precision( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes precision score. Args: pred: estimated probabilities target: ground-truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class Return: Tensor with precision. Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> precision(x, y) tensor(0.7500) """ return precision_recall(pred=pred, target=target, num_classes=num_classes, class_reduction=class_reduction)[0] def recall( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes recall score. Args: pred: estimated probabilities target: ground-truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class Return: Tensor with recall. Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> recall(x, y) tensor(0.7500) """ return precision_recall(pred=pred, target=target, num_classes=num_classes, class_reduction=class_reduction)[1] def fbeta_score( pred: torch.Tensor, target: torch.Tensor, beta: float, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes the F-beta score which is a weighted harmonic mean of precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0. Args: pred: estimated probabilities target: ground-truth labels beta: weights recall when combining the score. beta < 1: more weight to precision. beta > 1 more weight to recall beta = 0: only precision beta -> inf: only recall num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class Return: Tensor with the value of F-score. It is a value between 0-1. Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> fbeta_score(x, y, 0.2) tensor(0.7500) """ # We need to differentiate at which point to do class reduction intermidiate_reduction = 'none' if class_reduction != "micro" else 'micro' prec, rec, sups = precision_recall(pred=pred, target=target, num_classes=num_classes, class_reduction=intermidiate_reduction, return_support=True) num = (1 + beta ** 2) * prec * rec denom = ((beta ** 2) * prec + rec) if intermidiate_reduction == 'micro': return torch.sum(num) / torch.sum(denom) return class_reduce(num, denom, sups, class_reduction=class_reduction) def f1_score( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes the F1-score (a.k.a F-measure), which is the harmonic mean of the precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0. Args: pred: estimated probabilities target: ground-truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class Return: Tensor containing F1-score Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> f1_score(x, y) tensor(0.7500) """ return fbeta_score(pred=pred, target=target, beta=1., num_classes=num_classes, class_reduction=class_reduction) def _binary_clf_curve( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ adapted from https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_ranking.py """ if sample_weight is not None and not isinstance(sample_weight, torch.Tensor): sample_weight = torch.tensor(sample_weight, device=pred.device, dtype=torch.float) # remove class dimension if necessary if pred.ndim > target.ndim: pred = pred[:, 0] desc_score_indices = torch.argsort(pred, descending=True) pred = pred[desc_score_indices] target = target[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # pred typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. distinct_value_indices = torch.where(pred[1:] - pred[:-1])[0] threshold_idxs = F.pad(distinct_value_indices, (0, 1), value=target.size(0) - 1) target = (target == pos_label).to(torch.long) tps = torch.cumsum(target * weight, dim=0)[threshold_idxs] if sample_weight is not None: # express fps as a cumsum to ensure fps is increasing even in # the presence of floating point errors fps = torch.cumsum((1 - target) * weight, dim=0)[threshold_idxs] else: fps = 1 + threshold_idxs - tps return fps, tps, pred[threshold_idxs] def roc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary. Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weights pos_label: the label for the positive class Return: false-positive rate (fpr), true-positive rate (tpr), thresholds Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 1, 1]) >>> fpr, tpr, thresholds = roc(x, y) >>> fpr tensor([0., 0., 0., 0., 1.]) >>> tpr tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000]) >>> thresholds tensor([4, 3, 2, 1, 0]) """ fps, tps, thresholds = _binary_clf_curve(pred=pred, target=target, sample_weight=sample_weight, pos_label=pos_label) # Add an extra threshold position # to make sure that the curve starts at (0, 0) tps = torch.cat([torch.zeros(1, dtype=tps.dtype, device=tps.device), tps]) fps = torch.cat([torch.zeros(1, dtype=fps.dtype, device=fps.device), fps]) thresholds = torch.cat([thresholds[0][None] + 1, thresholds]) if fps[-1] <= 0: raise ValueError("No negative samples in targets, false positive value should be meaningless") fpr = fps / fps[-1] if tps[-1] <= 0: raise ValueError("No positive samples in targets, true positive value should be meaningless") tpr = tps / tps[-1] return fpr, tpr, thresholds def multiclass_roc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, num_classes: Optional[int] = None, ) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: """ Computes the Receiver Operating Characteristic (ROC) for multiclass predictors. Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weights num_classes: number of classes (default: None, computes automatically from data) Return: returns roc for each class. Number of classes, false-positive rate (fpr), true-positive rate (tpr), thresholds Example: >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], ... [0.05, 0.85, 0.05, 0.05], ... [0.05, 0.05, 0.85, 0.05], ... [0.05, 0.05, 0.05, 0.85]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> multiclass_roc(pred, target) # doctest: +NORMALIZE_WHITESPACE ((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])), (tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])), (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])), (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500]))) """ num_classes = get_num_classes(pred, target, num_classes) class_roc_vals = [] for c in range(num_classes): pred_c = pred[:, c] class_roc_vals.append(roc(pred=pred_c, target=target, sample_weight=sample_weight, pos_label=c)) return tuple(class_roc_vals) def precision_recall_curve( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Computes precision-recall pairs for different thresholds. Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weights pos_label: the label for the positive class Return: precision, recall, thresholds Example: >>> pred = torch.tensor([0, 1, 2, 3]) >>> target = torch.tensor([0, 1, 1, 0]) >>> precision, recall, thresholds = precision_recall_curve(pred, target) >>> precision tensor([0.6667, 0.5000, 0.0000, 1.0000]) >>> recall tensor([1.0000, 0.5000, 0.0000, 0.0000]) >>> thresholds tensor([1, 2, 3]) """ fps, tps, thresholds = _binary_clf_curve(pred=pred, target=target, sample_weight=sample_weight, pos_label=pos_label) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = torch.where(tps == tps[-1])[0][0] sl = slice(0, last_ind.item() + 1) # need to call reversed explicitly, since including that to slice would # introduce negative strides that are not yet supported in pytorch precision = torch.cat([reversed(precision[sl]), torch.ones(1, dtype=precision.dtype, device=precision.device)]) recall = torch.cat([reversed(recall[sl]), torch.zeros(1, dtype=recall.dtype, device=recall.device)]) thresholds = torch.tensor(reversed(thresholds[sl])) return precision, recall, thresholds def multiclass_precision_recall_curve( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, num_classes: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Computes precision-recall pairs for different thresholds given a multiclass scores. Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weight num_classes: number of classes Return: number of classes, precision, recall, thresholds Example: >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], ... [0.05, 0.85, 0.05, 0.05], ... [0.05, 0.05, 0.85, 0.05], ... [0.05, 0.05, 0.05, 0.85]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> nb_classes, precision, recall, thresholds = multiclass_precision_recall_curve(pred, target) >>> nb_classes (tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500])) >>> precision (tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500])) >>> recall (tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500])) >>> thresholds # doctest: +NORMALIZE_WHITESPACE (tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500])) """ num_classes = get_num_classes(pred, target, num_classes) class_pr_vals = [] for c in range(num_classes): pred_c = pred[:, c] class_pr_vals.append(precision_recall_curve( pred=pred_c, target=target, sample_weight=sample_weight, pos_label=c)) return tuple(class_pr_vals) def auc( x: torch.Tensor, y: torch.Tensor, reorder: bool = True ) -> torch.Tensor: """ Computes Area Under the Curve (AUC) using the trapezoidal rule Args: x: x-coordinates y: y-coordinates reorder: reorder coordinates, so they are increasing Return: Tensor containing AUC score (float) Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> auc(x, y) tensor(4.) """ direction = 1. if reorder: # can't use lexsort here since it is not implemented for torch order = torch.argsort(x) x, y = x[order], y[order] else: dx = x[1:] - x[:-1] if (dx < 0).any(): if (dx, 0).all(): direction = -1. else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) return direction * torch.trapz(y, x) def auc_decorator(reorder: bool = True) -> Callable: def wrapper(func_to_decorate: Callable) -> Callable: @wraps(func_to_decorate) def new_func(*args, **kwargs) -> torch.Tensor: x, y = func_to_decorate(*args, **kwargs)[:2] return auc(x, y, reorder=reorder) return new_func return wrapper def multiclass_auc_decorator(reorder: bool = True) -> Callable: def wrapper(func_to_decorate: Callable) -> Callable: def new_func(*args, **kwargs) -> torch.Tensor: results = [] for class_result in func_to_decorate(*args, **kwargs): x, y = class_result[:2] results.append(auc(x, y, reorder=reorder)) return torch.cat(results) return new_func return wrapper def auroc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> torch.Tensor: """ Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weights pos_label: the label for the positive class Return: Tensor containing ROCAUC score Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 1, 0]) >>> auroc(x, y) tensor(0.5000) """ if any(target > 1): raise ValueError('AUROC metric is meant for binary classification, but' ' target tensor contains value different from 0 and 1.' ' Multiclass is currently not supported.') @auc_decorator(reorder=True) def _auroc(pred, target, sample_weight, pos_label): return roc(pred, target, sample_weight, pos_label) return _auroc(pred=pred, target=target, sample_weight=sample_weight, pos_label=pos_label) def average_precision( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> torch.Tensor: """ Compute average precision from prediction scores Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weights pos_label: the label for the positive class Return: Tensor containing average precision score Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> average_precision(x, y) tensor(0.3333) """ precision, recall, _ = precision_recall_curve(pred=pred, target=target, sample_weight=sample_weight, pos_label=pos_label) # Return the step function integral # The following works because the last entry of precision is # guaranteed to be 1, as returned by precision_recall_curve return -torch.sum((recall[1:] - recall[:-1]) * precision[:-1]) def dice_score( pred: torch.Tensor, target: torch.Tensor, bg: bool = False, nan_score: float = 0.0, no_fg_score: float = 0.0, reduction: str = 'elementwise_mean', ) -> torch.Tensor: """ Compute dice score from prediction scores Args: pred: estimated probabilities target: ground-truth labels bg: whether to also compute dice for the background nan_score: score to return, if a NaN occurs during computation no_fg_score: score to return, if no foreground pixel was found in target reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied Return: Tensor containing dice score Example: >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], ... [0.05, 0.85, 0.05, 0.05], ... [0.05, 0.05, 0.85, 0.05], ... [0.05, 0.05, 0.05, 0.85]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> dice_score(pred, target) tensor(0.3333) """ num_classes = pred.shape[1] bg = (1 - int(bool(bg))) scores = torch.zeros(num_classes - bg, device=pred.device, dtype=torch.float32) for i in range(bg, num_classes): if not (target == i).any(): # no foreground class scores[i - bg] += no_fg_score continue tp, fp, tn, fn, sup = stat_scores(pred=pred, target=target, class_index=i) denom = (2 * tp + fp + fn).to(torch.float) # nan result score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero(denom) else nan_score scores[i - bg] += score_cls return reduce(scores, reduction=reduction) def iou( pred: torch.Tensor, target: torch.Tensor, ignore_index: Optional[int] = None, absent_score: float = 0.0, num_classes: Optional[int] = None, reduction: str = 'elementwise_mean', ) -> torch.Tensor: """ Intersection over union, or Jaccard index calculation. Args: pred: Tensor containing predictions target: Tensor containing targets ignore_index: optional int specifying a target class to ignore. If given, this class index does not contribute to the returned score, regardless of reduction method. Has no effect if given an int that is not in the range [0, num_classes-1], where num_classes is either given or derived from pred and target. By default, no index is ignored, and all classes are used. absent_score: score to use for an individual class, if no instances of the class index were present in `pred` AND no instances of the class index were present in `target`. For example, if we have 3 classes, [0, 0] for `pred`, and [0, 2] for `target`, then class 1 would be assigned the `absent_score`. Default is 0.0. num_classes: Optionally specify the number of classes reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied Return: IoU score : Tensor containing single value if reduction is 'elementwise_mean', or number of classes if reduction is 'none' Example: >>> target = torch.randint(0, 1, (10, 25, 25)) >>> pred = torch.tensor(target) >>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15] >>> iou(pred, target) tensor(0.4914) """ num_classes = get_num_classes(pred=pred, target=target, num_classes=num_classes) tps, fps, tns, fns, sups = stat_scores_multiple_classes(pred, target, num_classes) scores = torch.zeros(num_classes, device=pred.device, dtype=torch.float32) for class_idx in range(num_classes): if class_idx == ignore_index: continue tp = tps[class_idx] fp = fps[class_idx] fn = fns[class_idx] sup = sups[class_idx] # If this class is absent in the target (no support) AND absent in the pred (no true or false # positives), then use the absent_score for this class. if sup + tp + fp == 0: scores[class_idx] = absent_score continue denom = tp + fp + fn # Note that we do not need to worry about division-by-zero here since we know (sup + tp + fp != 0) from above, # which means ((tp+fn) + tp + fp != 0), which means (2tp + fp + fn != 0). Since all vars are non-negative, we # can conclude (tp + fp + fn > 0), meaning the denominator is non-zero for each class. score = tp.to(torch.float) / denom scores[class_idx] = score # Remove the ignored class index from the scores. if ignore_index is not None and ignore_index >= 0 and ignore_index < num_classes: scores = torch.cat([ scores[:ignore_index], scores[ignore_index + 1:], ]) return reduce(scores, reduction=reduction)