.. testsetup:: * from pytorch_lightning.core.lightning import LightningModule Transfer Learning ----------------- Using Pretrained Models ^^^^^^^^^^^^^^^^^^^^^^^ Sometimes we want to use a LightningModule as a pretrained model. This is fine because a LightningModule is just a `torch.nn.Module`! .. note:: Remember that a LightningModule is EXACTLY a torch.nn.Module but with more capabilities. Let's use the `AutoEncoder` as a feature extractor in a separate model. .. testcode:: class Encoder(torch.nn.Module): ... class AutoEncoder(LightningModule): def __init__(self): self.encoder = Encoder() self.decoder = Decoder() class CIFAR10Classifier(LightningModule): def __init__(self): # init the pretrained LightningModule self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH) self.feature_extractor.freeze() # the autoencoder outputs a 100-dim representation and CIFAR-10 has 10 classes self.classifier = nn.Linear(100, 10) def forward(self, x): representations = self.feature_extractor(x) x = self.classifier(representations) ... We used our pretrained Autoencoder (a LightningModule) for transfer learning! Example: Imagenet (computer Vision) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. testcode:: :skipif: not TORCHVISION_AVAILABLE import torchvision.models as models class ImagenetTransferLearning(LightningModule): def __init__(self): # init a pretrained resnet num_target_classes = 10 self.feature_extractor = models.resnet50(pretrained=True) self.feature_extractor.eval() # use the pretrained model to classify cifar-10 (10 image classes) self.classifier = nn.Linear(2048, num_target_classes) def forward(self, x): representations = self.feature_extractor(x) x = self.classifier(representations) ... Finetune .. code-block:: python model = ImagenetTransferLearning() trainer = Trainer() trainer.fit(model) And use it to predict your data of interest .. code-block:: python model = ImagenetTransferLearning.load_from_checkpoint(PATH) model.freeze() x = some_images_from_cifar10() predictions = model(x) We used a pretrained model on imagenet, finetuned on CIFAR-10 to predict on CIFAR-10. In the non-academic world we would finetune on a tiny dataset you have and predict on your dataset. Example: BERT (NLP) ^^^^^^^^^^^^^^^^^^^ Lightning is completely agnostic to what's used for transfer learning so long as it is a `torch.nn.Module` subclass. Here's a model that uses `Huggingface transformers `_. .. testcode:: class BertMNLIFinetuner(LightningModule): def __init__(self): super().__init__() self.bert = BertModel.from_pretrained('bert-base-cased', output_attentions=True) self.W = nn.Linear(bert.config.hidden_size, 3) self.num_classes = 3 def forward(self, input_ids, attention_mask, token_type_ids): h, _, attn = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) h_cls = h[:, 0] logits = self.W(h_cls) return logits, attn