.. testsetup:: *
from pytorch_lightning.trainer.trainer import Trainer
from pytorch_lightning.core.lightning import LightningModule
.. _loggers:
*******
Loggers
*******
Lightning supports the most popular logging frameworks (TensorBoard, Comet, etc...). TensorBoard is used by default,
but you can pass to the :class:`~pytorch_lightning.trainer.trainer.Trainer` any combintation of the following loggers.
.. note::
All loggers log by default to `os.getcwd()`. To change the path without creating a logger set
`Trainer(default_root_dir='/your/path/to/save/checkpoints')`
Read more about :ref:`logging` options.
Comet.ml
========
`Comet.ml `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install comet-ml
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
import os
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(
api_key=os.environ.get('COMET_API_KEY'),
workspace=os.environ.get('COMET_WORKSPACE'), # Optional
save_dir='.', # Optional
project_name='default_project', # Optional
rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
experiment_name='default' # Optional
)
trainer = Trainer(logger=comet_logger)
The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.CometLogger` docs.
----------------
MLflow
======
`MLflow `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install mlflow
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(
experiment_name="default",
tracking_uri="file:./ml-runs"
)
trainer = Trainer(logger=mlf_logger)
.. seealso::
:class:`~pytorch_lightning.loggers.MLFlowLogger` docs.
----------------
Neptune.ai
==========
`Neptune.ai `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install neptune-client
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
api_key='ANONYMOUS', # replace with your own
project_name='shared/pytorch-lightning-integration',
experiment_name='default', # Optional,
params={'max_epochs': 10}, # Optional,
tags=['pytorch-lightning', 'mlp'], # Optional,
)
trainer = Trainer(logger=neptune_logger)
The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.NeptuneLogger` docs.
----------------
Tensorboard
===========
To use `TensorBoard `_ as your logger do the following.
.. testcode::
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger('tb_logs', name='my_model')
trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
----------------
Test Tube
=========
`Test Tube `_ is a
`TensorBoard `_ logger but with nicer file structure.
To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install test_tube
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger('tb_logs', name='my_model')
trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.TestTubeLogger` docs.
----------------
Weights and Biases
==================
`Weights and Biases `_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install wandb
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger(offline=True)
trainer = Trainer(logger=wandb_logger)
The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.log({
"generated_images": [wandb.Image(some_img, caption="...")]
})
.. seealso::
:class:`~pytorch_lightning.loggers.WandbLogger` docs.
----------------
Multiple Loggers
================
Lightning supports the use of multiple loggers, just pass a list to the
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
.. code-block:: python
from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
logger1 = TensorBoardLogger('tb_logs', name='my_model')
logger2 = TestTubeLogger('tb_logs', name='my_model')
trainer = Trainer(logger=[logger1, logger2])
The loggers are available as a list anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
# Option 1
self.logger.experiment[0].add_image('generated_images', some_img, 0)
# Option 2
self.logger[0].experiment.add_image('generated_images', some_img, 0)