# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger from tests.base.boring_model import BoringModel class TestModel(BoringModel): def __init__(self, expected_log_dir): super().__init__() self.expected_log_dir = expected_log_dir def training_step(self, *args, **kwargs): assert self.trainer.log_dir == self.expected_log_dir return super().training_step(*args, **kwargs) def test_logdir(tmpdir): """ Tests that the path is correct when checkpoint and loggers are used """ expected = os.path.join(tmpdir, 'lightning_logs', 'version_0') model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, callbacks=[ModelCheckpoint(dirpath=tmpdir)], ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_no_checkpoint_cb(tmpdir): """ Tests that the path is correct with no checkpoint """ expected = os.path.join(tmpdir, 'lightning_logs', 'version_0') model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, checkpoint_callback=False ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_no_logger(tmpdir): """ Tests that the path is correct even when there is no logger """ expected = os.path.join(tmpdir) model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, logger=False, callbacks=[ModelCheckpoint(dirpath=tmpdir)], ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_no_logger_no_checkpoint(tmpdir): """ Tests that the path is correct even when there is no logger """ expected = os.path.join(tmpdir) model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, logger=False, checkpoint_callback=False ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_custom_callback(tmpdir): """ Tests that the path is correct even when there is a custom callback """ expected = os.path.join(tmpdir, 'lightning_logs', 'version_0') model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, callbacks=[ModelCheckpoint(dirpath=os.path.join(tmpdir, 'ckpts'))], ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_custom_logger(tmpdir): """ Tests that the path is correct even when there is a custom logger """ expected = os.path.join(tmpdir, 'custom_logs', 'version_0') model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, callbacks=[ModelCheckpoint(dirpath=tmpdir)], logger=TensorBoardLogger(save_dir=tmpdir, name='custom_logs') ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected