# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from pytorch_lightning.trainer import Trainer from tests.base import SimpleModule @pytest.mark.parametrize('max_epochs', [1, 2, 3]) def test_val_check_interval_1(tmpdir, max_epochs): class TestModel(SimpleModule): def __init__(self): super().__init__() self.train_epoch_calls = 0 self.val_epoch_calls = 0 def on_train_epoch_start(self) -> None: self.train_epoch_calls += 1 def on_validation_epoch_start(self) -> None: if not self.trainer.running_sanity_check: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( max_epochs=max_epochs, val_check_interval=1.0, logger=False, ) trainer.fit(model) assert model.val_epoch_calls == max_epochs @pytest.mark.parametrize('max_epochs', [1, 2, 3]) def test_val_check_interval_quarter(tmpdir, max_epochs): class TestModel(SimpleModule): def __init__(self): super().__init__() self.train_epoch_calls = 0 self.val_epoch_calls = 0 def on_train_epoch_start(self) -> None: self.train_epoch_calls += 1 def on_validation_epoch_start(self) -> None: if not self.trainer.running_sanity_check: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( max_epochs=max_epochs, val_check_interval=0.25, logger=False, ) trainer.fit(model) assert model.val_epoch_calls == max_epochs * 4 @pytest.mark.parametrize('max_epochs', [1, 2, 3]) def test_val_check_interval_third(tmpdir, max_epochs): class TestModel(SimpleModule): def __init__(self): super().__init__() self.train_epoch_calls = 0 self.val_epoch_calls = 0 def on_train_epoch_start(self) -> None: self.train_epoch_calls += 1 def on_validation_epoch_start(self) -> None: if not self.trainer.running_sanity_check: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( max_epochs=max_epochs, val_check_interval=0.33, logger=False, ) trainer.fit(model) assert model.val_epoch_calls == max_epochs * 3