# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Union, Optional from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, ProgressBarBase, ProgressBar from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException class CallbackConnector: def __init__(self, trainer): self.trainer = trainer def on_trainer_init( self, callbacks, checkpoint_callback, progress_bar_refresh_rate, process_position, default_root_dir, weights_save_path, resume_from_checkpoint ): self.trainer.resume_from_checkpoint = resume_from_checkpoint # init folder paths for checkpoint + weights save callbacks self.trainer._default_root_dir = default_root_dir or os.getcwd() self.trainer._weights_save_path = weights_save_path or self.trainer._default_root_dir # init callbacks self.trainer.callbacks = callbacks or [] # configure checkpoint callback # it is important that this is the last callback to run # pass through the required args to figure out defaults self.configure_checkpoint_callbacks(checkpoint_callback) # init progress bar self.trainer._progress_bar_callback = self.configure_progress_bar( progress_bar_refresh_rate, process_position ) def configure_checkpoint_callbacks(self, checkpoint_callback: Union[ModelCheckpoint, bool]): if isinstance(checkpoint_callback, ModelCheckpoint): # TODO: deprecated, remove this block in v1.3.0 rank_zero_warn( "Passing a ModelCheckpoint instance to Trainer(checkpoint_callbacks=...)" " is deprecated since v1.1 and will no longer be supported in v1.3.", DeprecationWarning ) self.trainer.callbacks.append(checkpoint_callback) if self._trainer_has_checkpoint_callbacks() and checkpoint_callback is False: raise MisconfigurationException( "Trainer was configured with checkpoint_callback=False but found ModelCheckpoint" " in callbacks list." ) if not self._trainer_has_checkpoint_callbacks() and checkpoint_callback is True: self.trainer.callbacks.append(ModelCheckpoint(dirpath=None, filename=None)) def configure_progress_bar(self, refresh_rate=1, process_position=0): progress_bars = [c for c in self.trainer.callbacks if isinstance(c, ProgressBarBase)] if len(progress_bars) > 1: raise MisconfigurationException( 'You added multiple progress bar callbacks to the Trainer, but currently only one' ' progress bar is supported.' ) elif len(progress_bars) == 1: progress_bar_callback = progress_bars[0] elif refresh_rate > 0: progress_bar_callback = ProgressBar( refresh_rate=refresh_rate, process_position=process_position, ) self.trainer.callbacks.append(progress_bar_callback) else: progress_bar_callback = None return progress_bar_callback def _trainer_has_checkpoint_callbacks(self): return len(self.trainer.checkpoint_callbacks) > 0