# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import os import subprocess import sys from os.path import abspath from time import sleep from typing import Any, List, Optional, Union import numpy as np import torch import torch.distributed as torch_distrib from torch.nn.parallel import DistributedDataParallel from pytorch_lightning import _logger as log from pytorch_lightning.accelerators.accelerator import Accelerator, ReduceOp from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.distributed.dist import LightningDistributed from pytorch_lightning.plugins.rpc_plugin import RPCPlugin from pytorch_lightning.utilities import HYDRA_AVAILABLE, AMPType from pytorch_lightning.utilities.distributed import all_gather_ddp_if_available from pytorch_lightning.utilities.distributed import find_free_network_port, rank_zero_only, sync_ddp_if_available from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.seed import seed_everything if HYDRA_AVAILABLE: from hydra.core.hydra_config import HydraConfig from hydra.utils import get_original_cwd, to_absolute_path class DDPAccelerator(Accelerator): def __init__(self, trainer=None, cluster_environment=None, ddp_plugin=None): """ Runs training using DDP strategy on a single machine (manually, not via cluster start) Example:: # default trainer = Trainer(accelerator=DDPAccelerator()) """ super().__init__(trainer, cluster_environment, ddp_plugin) self.task_idx = None self._has_spawned_children = False self.interactive_ddp_procs = [] self.dist = LightningDistributed() self.nickname = 'ddp' def setup(self, model): # first track model self.trainer.model = model # start the other scripts if os.environ.get('PL_IN_DDP_SUBPROCESS', '0') != '1': self._call_children_scripts() # set the task idx self.task_idx = int(os.environ['LOCAL_RANK']) def _call_children_scripts(self): assert self.trainer.global_rank == 0 self._check_can_spawn_children() self._has_spawned_children = True os.environ['MASTER_ADDR'] = os.environ.get('MASTER_ADDR', '127.0.0.1') os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', str(find_free_network_port())) # allow the user to pass the node rank node_rank = '0' node_rank = os.environ.get('NODE_RANK', node_rank) node_rank = os.environ.get('GROUP_RANK', node_rank) os.environ['NODE_RANK'] = node_rank os.environ['LOCAL_RANK'] = '0' # when user is using hydra find the absolute path path_lib = abspath if not HYDRA_AVAILABLE else to_absolute_path # pull out the commands used to run the script and resolve the abs file path command = sys.argv try: full_path = path_lib(command[0]) except Exception as e: full_path = abspath(command[0]) command[0] = full_path # use the same python interpreter and actually running command = [sys.executable] + command # the visible devices tell us how many GPUs we want to use. # when the trainer script was called the device has already been scoped by the time # code reaches this point. so, to call the scripts, we need to leave cuda visible devices alone # but forward the GPUs selected via environment variables if self.trainer.data_parallel_device_ids is None: raise MisconfigurationException('you selected (distribute_backend = ddp) but did not set Trainer(gpus=?)') os.environ['PL_TRAINER_GPUS'] = ','.join([str(i) for i in self.trainer.data_parallel_device_ids]) os.environ['PL_IN_DDP_SUBPROCESS'] = '1' if self.trainer.logger is not None: os.environ['PL_EXP_VERSION'] = str(self.trainer.logger.version) num_gpus = len(self.trainer.data_parallel_device_ids) os.environ['WORLD_SIZE'] = f'{num_gpus * self.trainer.num_nodes}' self.interactive_ddp_procs = [] for local_rank in range(1, self.trainer.num_processes): env_copy = os.environ.copy() env_copy['LOCAL_RANK'] = f'{local_rank}' # remove env var if global seed not set if os.environ.get('PL_GLOBAL_SEED') is None and 'PL_GLOBAL_SEED' in env_copy: del env_copy['PL_GLOBAL_SEED'] # start process # if hydra is available and initialized, make sure to set the cwd correctly cwd: Optional[str] = None if HYDRA_AVAILABLE: if HydraConfig.initialized(): cwd = get_original_cwd() proc = subprocess.Popen(command, env=env_copy, cwd=cwd) self.interactive_ddp_procs.append(proc) # starting all processes at once can cause issues # with dataloaders delay between 1-10 seconds delay = np.random.uniform(1, 5, 1)[0] sleep(delay) def train(self): model = self.trainer.model results = self.ddp_train(process_idx=self.task_idx, model=model) if 'WORLD_SIZE' in os.environ: del os.environ['WORLD_SIZE'] return results def training_step(self, args): return self._step(args) def validation_step(self, args): return self._step(args) def test_step(self, args): return self._step(args) def _step(self, args): args = self.ddp_plugin.on_before_forward(self.trainer.get_model(), *args) if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model(*args) else: output = self.trainer.model(*args) return output def barrier(self, name: Optional[str] = None): if self.rpc_enabled: # Allow RPC to handle barrier on main RPC processes self.ddp_plugin.barrier() elif torch_distrib.is_initialized(): torch_distrib.barrier(group=self.ddp_plugin.data_parallel_group) def _check_can_spawn_children(self): if self._has_spawned_children: raise RuntimeError( "You tried to run `.fit` or `.test` multiple times in the same script." " This is not supported in DDP mode, switch to `accelerator='ddp_spawn'` instead." ) def set_world_ranks(self, process_idx): self.trainer.local_rank = process_idx self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes def init_device(self, process_idx): self.trainer.root_gpu = self.trainer.data_parallel_device_ids[self.trainer.local_rank] torch.cuda.set_device(self.trainer.root_gpu) def model_to_device(self, model): model.cuda(self.trainer.root_gpu) def get_device_ids(self): device_ids = [self.trainer.root_gpu] return device_ids def on_train_end(self): pass def early_stopping_should_stop(self, pl_module): stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device) torch_distrib.all_reduce(stop, op=torch_distrib.reduce_op.SUM) self.barrier('early_stopping') should_stop = stop == self.trainer.world_size return should_stop def broadcast(self, obj, src=0): return self.dist.broadcast(obj, group=self.ddp_plugin.data_parallel_group) def ddp_train(self, process_idx, model): """ Entry point for ddp Args: process_idx: mp_queue: multiprocessing queue model: Returns: Dict with evaluation results """ seed = os.environ.get("PL_GLOBAL_SEED") if seed is not None: seed_everything(int(seed)) # show progressbar only on progress_rank 0 if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None: self.trainer.progress_bar_callback.disable() # determine which process we are and world size self.set_world_ranks(process_idx) # set warning rank rank_zero_only.rank = self.trainer.global_rank # Initialize cuda device self.init_device(process_idx) # set up server using proc 0's ip address # try to init for 20 times at max in case ports are taken # where to store ip_table model.trainer = self.trainer self.init_ddp_connection( self.trainer.global_rank, self.trainer.world_size, self.trainer.is_slurm_managing_tasks ) if isinstance(self.ddp_plugin, RPCPlugin): if not self.ddp_plugin.is_main_rpc_process: self.ddp_plugin.on_accelerator_exit_rpc_process(self.trainer) self.ddp_plugin.exit_rpc_process() if self.ddp_plugin.return_after_exit_rpc_process: return else: self.ddp_plugin.on_main_rpc_connection(self.trainer) # call setup after the ddp process has connected self.trainer.call_setup_hook(model) # on world_size=0 let everyone know training is starting if self.trainer.is_global_zero and not torch.distributed.is_initialized(): log.info('-' * 100) log.info(f'distributed_backend={self.trainer.distributed_backend}') log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes') log.info('-' * 100) # call sync_bn before .cuda(), configure_apex and configure_ddp if self.trainer.sync_batchnorm: model = self.configure_sync_batchnorm(model) # move the model to the correct device self.model_to_device(model) # CHOOSE OPTIMIZER # allow for lr schedulers as well self.setup_optimizers(model) # set model properties before going into wrapper self.trainer.model_connector.copy_trainer_model_properties(model) # 16-bit model = self.trainer.precision_connector.connect(model) self.trainer.convert_to_lightning_optimizers() # device ids change depending on the DDP setup device_ids = self.get_device_ids() # allow user to configure ddp model = self.configure_ddp(model, device_ids) # set up training routine self.barrier('ddp_setup') self.trainer.train_loop.setup_training(model) # train or test results = self.train_or_test() # clean up memory torch.cuda.empty_cache() return results def configure_ddp( self, model: LightningModule, device_ids: List[int] ) -> DistributedDataParallel: model = self.ddp_plugin.configure_ddp(model, device_ids) return model def configure_sync_batchnorm(self, model: LightningModule) -> LightningModule: """ Add global batchnorm for a model spread across multiple GPUs and nodes. Override to synchronize batchnorm between specific process groups instead of the whole world or use a different sync_bn like `apex`'s version. Args: model: pointer to current :class:`LightningModule`. Return: LightningModule with batchnorm layers synchronized between process groups """ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model, process_group=None) return model def sync_tensor(self, tensor: Union[torch.Tensor], group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None) -> torch.Tensor: """ """ return sync_ddp_if_available(tensor, group, reduce_op) def all_gather(self, tensor: Union[torch.Tensor], group: Optional[Any] = None, sync_grads: bool = False): """ Function to gather a tensor from several distributed processes Args: tensor: tensor of shape (batch, ...) group: the process group to gather results from. Defaults to all processes (world) sync_grads: flag that allows users to synchronize gradients for all_gather op Return: A tensor of shape (world_size, batch, ...) """ return all_gather_ddp_if_available(tensor, group=group, sync_grads=sync_grads) def get_reference_model(self, model) -> LightningModule: return self.ddp_plugin.get_model_from_plugin(model) @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict( num_replicas=self.trainer.num_nodes * self.trainer.num_processes, rank=self.trainer.global_rank ) if self.ddp_plugin is not None: distributed_sampler_kwargs = self.ddp_plugin.distributed_sampler_kwargs(distributed_sampler_kwargs) return distributed_sampler_kwargs @property def require_distributed_sampler(self): return True