# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MNIST autoencoder example. To run: python autoencoder.py --trainer.max_epochs=50 """ import torch import torch.nn.functional as F from torch import nn from torch.utils.data import DataLoader, random_split import pytorch_lightning as pl from pl_examples import _DATASETS_PATH, cli_lightning_logo from pl_examples.basic_examples.mnist_datamodule import MNIST from pytorch_lightning.utilities.cli import LightningCLI from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE if _TORCHVISION_AVAILABLE: from torchvision import transforms class LitAutoEncoder(pl.LightningModule): """ >>> LitAutoEncoder() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitAutoEncoder( (encoder): ... (decoder): ... ) """ def __init__(self, hidden_dim: int = 64): super().__init__() self.encoder = nn.Sequential(nn.Linear(28 * 28, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 3)) self.decoder = nn.Sequential(nn.Linear(3, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 28 * 28)) def forward(self, x): # in lightning, forward defines the prediction/inference actions embedding = self.encoder(x) return embedding def training_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) return loss def validation_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log("valid_loss", loss, on_step=True) def test_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log("test_loss", loss, on_step=True) def predict_step(self, batch, batch_idx, dataloader_idx=None): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) return self.decoder(z) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer class MyDataModule(pl.LightningDataModule): def __init__(self, batch_size: int = 32): super().__init__() dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000]) self.batch_size = batch_size def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=self.batch_size) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=self.batch_size) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size) def predict_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size) def cli_main(): cli = LightningCLI( LitAutoEncoder, MyDataModule, seed_everything_default=1234, save_config_overwrite=True, run=False ) cli.trainer.fit(cli.model, datamodule=cli.datamodule) cli.trainer.test(ckpt_path="best") predictions = cli.trainer.predict(ckpt_path="best") print(predictions[0]) if __name__ == "__main__": cli_lightning_logo() cli_main()