# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import ExitStack from typing import Any, List, Optional, Tuple, Union import torch import torch.nn as nn from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler import pytorch_lightning as pl from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.parallel import ParallelStrategy from pytorch_lightning.utilities import _HOROVOD_AVAILABLE from pytorch_lightning.utilities.distributed import distributed_available from pytorch_lightning.utilities.distributed import group as dist_group from pytorch_lightning.utilities.distributed import rank_zero_only, ReduceOp from pytorch_lightning.utilities.enums import _StrategyType if _HOROVOD_AVAILABLE: import horovod.torch as hvd class HorovodStrategy(ParallelStrategy): """Plugin for Horovod distributed training integration.""" distributed_backend = _StrategyType.HOROVOD def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ): super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=None, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) rank_zero_only.rank = self.global_rank self._exit_stack: Optional[ExitStack] = None @property def global_rank(self) -> int: return hvd.rank() @property def local_rank(self) -> int: return hvd.local_rank() @property def world_size(self) -> int: return hvd.size() @property def root_device(self): return self.parallel_devices[self.local_rank] @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict(num_replicas=self.world_size, rank=self.global_rank) return distributed_sampler_kwargs def setup(self, trainer: "pl.Trainer") -> None: self.model_to_device() super().setup(trainer) self._exit_stack = ExitStack() self._exit_stack.__enter__() if not self.lightning_module.trainer.training: # no need to setup optimizers return def _unpack_lightning_optimizer(opt): return opt._optimizer if isinstance(opt, LightningOptimizer) else opt optimizers = self.optimizers optimizers = [_unpack_lightning_optimizer(opt) for opt in optimizers] # Horovod: scale the learning rate by the number of workers to account for # increased total batch size for optimizer in optimizers: for param_group in optimizer.param_groups: param_group["lr"] *= self.world_size # Horovod: adjust base LR used by schedulers to match scaled optimizer initial LR lr_schedulers = self.lightning_module.trainer.lr_schedulers for scheduler in lr_schedulers: scheduler = scheduler["scheduler"] if isinstance(scheduler, _LRScheduler): scheduler.base_lrs = [lr * self.world_size for lr in scheduler.base_lrs] # Horovod: broadcast parameters & optimizer state to ensure consistent initialization hvd.broadcast_parameters(self.lightning_module.state_dict(), root_rank=0) for optimizer in optimizers: hvd.broadcast_optimizer_state(optimizer, root_rank=0) self.optimizers = self._wrap_optimizers(optimizers) for optimizer in self.optimizers: # Synchronization will be performed explicitly following backward() self._exit_stack.enter_context(optimizer.skip_synchronize()) def barrier(self, *args, **kwargs): if distributed_available(): self.join() def broadcast(self, obj: object, src: int = 0) -> object: obj = hvd.broadcast_object(obj, src) return obj def model_to_device(self): if self.on_gpu: # this can potentially be removed after #8312. Not done due to lack of horovod testing torch.cuda.set_device(self.root_device) self.model.to(self.root_device) def join(self): if self.on_gpu: hvd.join(self.local_rank) else: hvd.join() def reduce(self, tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"): """Reduces a tensor from several distributed processes to one aggregated tensor. Args: tensor: the tensor to sync and reduce group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to 'mean'/'avg'. Can also be a string 'sum' to calculate the sum during reduction. Return: reduced value, except when the input was not a tensor the output remains is unchanged """ if group is not None: raise ValueError("Horovod does not support allreduce using a subcommunicator at this time. Unset `group`.") if reduce_op in (None, "avg", "mean"): reduce_op = hvd.Average elif reduce_op in ("sum", ReduceOp.SUM): reduce_op = hvd.Sum else: raise ValueError(f"unrecognized `reduce_op`: {reduce_op}") # sync all processes before reduction self.join() return hvd.allreduce(tensor, op=reduce_op) def all_gather( self, result: torch.Tensor, group: Optional[Any] = dist_group.WORLD, sync_grads: bool = False ) -> torch.Tensor: if group is not None and group != dist_group.WORLD: raise ValueError("Horovod does not support allgather using a subcommunicator at this time. Unset `group`.") if len(result.shape) == 0: # Convert scalars to single dimension tensors result = result.reshape(1) # sync and gather all self.join() return hvd.allgather(result) def post_backward(self, closure_loss: torch.Tensor) -> None: # synchronize all horovod optimizers. for optimizer in self.lightning_module.trainer.optimizers: optimizer.synchronize() def _wrap_optimizers(self, optimizers: List[Optimizer]) -> List["hvd.DistributedOptimizer"]: """Wraps optimizers to perform gradient aggregation via allreduce.""" return [ hvd.DistributedOptimizer(opt, named_parameters=self._filter_named_parameters(self.lightning_module, opt)) if "horovod" not in str(opt.__class__) else opt for opt in optimizers ] @staticmethod def _filter_named_parameters(model: nn.Module, optimizer: Optimizer) -> List[Tuple[str, nn.Parameter]]: opt_params = {p for group in optimizer.param_groups for p in group.get("params", [])} return [(name, p) for name, p in model.named_parameters() if p in opt_params] def teardown(self) -> None: super().teardown() self._exit_stack.__exit__(None, None, None) self._exit_stack = None # Make sure all workers have finished training before returning to the user self.join() if self.on_gpu: # GPU teardown self.lightning_module.cpu() # clean up memory torch.cuda.empty_cache()