.. testsetup:: * from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning import loggers as pl_loggers .. role:: hidden :class: hidden-section .. _loggers: Loggers =========== Lightning supports the most popular logging frameworks (TensorBoard, Comet, etc...). To use a logger, simply pass it into the :class:`~pytorch_lightning.trainer.trainer.Trainer`. Lightning uses TensorBoard by default. .. testcode:: from pytorch_lightning import loggers as pl_loggers tb_logger = pl_loggers.TensorBoardLogger('logs/') trainer = Trainer(logger=tb_logger) Choose from any of the others such as MLflow, Comet, Neptune, WandB, ... .. testcode:: comet_logger = pl_loggers.CometLogger(save_dir='logs/') trainer = Trainer(logger=comet_logger) To use multiple loggers, simply pass in a ``list`` or ``tuple`` of loggers ... .. testcode:: tb_logger = pl_loggers.TensorBoardLogger('logs/') comet_logger = pl_loggers.CometLogger(save_dir='logs/') trainer = Trainer(logger=[tb_logger, comet_logger]) .. note:: All loggers log by default to `os.getcwd()`. To change the path without creating a logger set `Trainer(default_root_dir='/your/path/to/save/checkpoints')` ---------- Logging from a LightningModule ------------------------------ Interact with loggers in two ways, automatically and/or manually. Automatic logging ^^^^^^^^^^^^^^^^^ Use the :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method to log from anywhere in a LightningModule. .. code-block:: python def training_step(self, batch, batch_idx): self.log('my_metric', x) The :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method has a few options: - on_step (logs the metric at that step in training) - on_epoch (automatically accumulates and logs at the end of the epoch) - prog_bar (logs to the progress bar) - logger (logs to the logger like Tensorboard) Depending on where log is called from, Lightning auto-determines the correct mode for you. But of course you can override the default behavior by manually setting the flags .. note:: Setting on_epoch=True will accumulate your logged values over the full training epoch. .. code-block:: python def training_step(self, batch, batch_idx): self.log('my_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) Once your training starts, you can view the logs by using your favorite logger or booting up the Tensorboard logs: .. code-block:: bash tensorboard --logdir ./lightning_logs Manual logging ^^^^^^^^^^^^^^ For certain things like histograms, text, images, etc... you may need to use the logger object directly. .. code-block:: python def training_step(...): ... # the logger you used (in this case tensorboard) tensorboard = self.logger.experiment tensorboard.add_histogram(...) tensorboard.add_figure(...) ---------- Logging from a Callback ----------------------- To log from a callback, the :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method of the LightningModule. .. code-block:: python class MyCallback(Callback): def on_train_epoch_end(self, trainer, pl_module): pl_module.log('something', x) or access the logger object directly .. code-block:: python class MyCallback(Callback): def on_train_epoch_end(self, trainer, pl_module): tensorboard = pl_module.logger.experiment tensorboard.add_histogram(...) tensorboard.add_figure(...) ---------- Make a Custom Logger -------------------- You can implement your own logger by writing a class that inherits from :class:`LightningLoggerBase`. Use the :func:`~pytorch_lightning.loggers.base.rank_zero_only` decorator to make sure that only the first process in DDP training logs data. .. testcode:: from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.loggers import LightningLoggerBase class MyLogger(LightningLoggerBase): @rank_zero_only def log_hyperparams(self, params): # params is an argparse.Namespace # your code to record hyperparameters goes here pass @rank_zero_only def log_metrics(self, metrics, step): # metrics is a dictionary of metric names and values # your code to record metrics goes here pass def save(self): # Optional. Any code necessary to save logger data goes here # If you implement this, remember to call `super().save()` # at the start of the method (important for aggregation of metrics) super().save() @rank_zero_only def finalize(self, status): # Optional. Any code that needs to be run after training # finishes goes here pass If you write a logger that may be useful to others, please send a pull request to add it to Lightning! ---------- Supported Loggers ----------------- The following are loggers we support Comet ^^^^^ .. autoclass:: pytorch_lightning.loggers.comet.CometLogger :noindex: CSVLogger ^^^^^^^^^ .. autoclass:: pytorch_lightning.loggers.csv_logs.CSVLogger :noindex: MLFlow ^^^^^^ .. autoclass:: pytorch_lightning.loggers.mlflow.MLFlowLogger :noindex: Neptune ^^^^^^^ .. autoclass:: pytorch_lightning.loggers.neptune.NeptuneLogger :noindex: Tensorboard ^^^^^^^^^^^^ .. autoclass:: pytorch_lightning.loggers.tensorboard.TensorBoardLogger :noindex: Test-tube ^^^^^^^^^ .. autoclass:: pytorch_lightning.loggers.test_tube.TestTubeLogger :noindex: Weights and Biases ^^^^^^^^^^^^^^^^^^ .. autoclass:: pytorch_lightning.loggers.wandb.WandbLogger :noindex: