# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.utilities.xla_device import XLADeviceUtils from tests.base.boring_model import BoringModel from tests.base.develop_utils import pl_multi_process_test @pytest.mark.skipif(not XLADeviceUtils.tpu_device_exists(), reason="test requires TPU machine") @pl_multi_process_test def test_resume_training_on_cpu(tmpdir): """ Checks if training can be resumed from a saved checkpoint on CPU""" # Train a model on TPU model = BoringModel() trainer = Trainer(checkpoint_callback=True, max_epochs=1, tpu_cores=8,) trainer.fit(model) model_path = trainer.checkpoint_callback.best_model_path # Verify saved Tensors are on CPU ckpt = torch.load(model_path) weight_tensor = list(ckpt["state_dict"].values())[0] assert weight_tensor.device == torch.device("cpu") # Verify that training is resumed on CPU trainer = Trainer( resume_from_checkpoint=model_path, checkpoint_callback=True, max_epochs=1, default_root_dir=tmpdir, ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" @pytest.mark.skipif(not XLADeviceUtils.tpu_device_exists(), reason="test requires TPU machine") @pl_multi_process_test def test_if_test_works_after_train(tmpdir): """ Ensure that .test() works after .fit() """ # Train a model on TPU model = BoringModel() trainer = Trainer(checkpoint_callback=True, max_epochs=1, tpu_cores=8, default_root_dir=tmpdir) trainer.fit(model) assert trainer.test() == 1