# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numbers from copy import copy from typing import Optional, Dict, Union, Sequence, Callable, MutableMapping, Any, List, Tuple import torch from torch import Tensor import os from pytorch_lightning.metrics.converters import sync_ddp_if_available class Result(Dict): def __init__( self, minimize: Optional[Tensor] = None, early_stop_on: Optional[Tensor] = None, checkpoint_on: Union[Tensor, bool, None] = None, hiddens: Optional[Tensor] = None, ): super().__init__() # temporary until dict results are deprecated os.environ['PL_USING_RESULT_OBJ'] = '1' if early_stop_on is not None: self.early_stop_on = early_stop_on if checkpoint_on is not None and checkpoint_on: self.checkpoint_on = checkpoint_on if hiddens is not None: self.hiddens = hiddens.detach() if minimize is not None: err = 'Minimize can only be used in training_step, training_step_end, training_epoch_end' self._assert_grad_tensor_metric('minimize', minimize, err) self.minimize = minimize if minimize is not None and checkpoint_on is None: self.checkpoint_on = minimize.detach() self['meta'] = {'_internal': {'_reduce_on_epoch': False, 'batch_sizes': []}} def __getitem__(self, key: Union[str, Any]) -> Any: try: return super().__getitem__(key) except KeyError: return super().__getitem__(f'step_{key}') def __getattr__(self, key: str) -> Any: try: if key == 'callback_metrics': return self.get_callback_metrics() elif key == 'batch_log_metrics': return self.get_batch_log_metrics() elif key == 'batch_pbar_metrics': return self.get_batch_pbar_metrics() elif key == 'epoch_log_metrics': return self.get_epoch_log_metrics() elif key == 'epoch_pbar_metrics': return self.get_epoch_pbar_metrics() else: return self[key] except KeyError: return None def __setattr__(self, key: str, val: Union[Tensor, Any]): # ensure reserve keys are tensors and detached if key in {'checkpoint_on', 'early_stop_on'}: self._assert_tensor_metric(key, val) if val is not None and isinstance(val, torch.Tensor): val = val.detach() # ensure anything else that is a tensor is detached elif isinstance(val, torch.Tensor) and key != 'minimize': val = val.detach() self[key] = val def _assert_tensor_metric(self, name: str, potential_metric: Union[bool, Tensor, None, Any]): if potential_metric is not None and not isinstance(potential_metric, bool): assert isinstance(potential_metric, Tensor), f'{name} must be a torch.Tensor' def _assert_grad_tensor_metric(self, name: str, x: Union[torch.Tensor, Any], additional_err: str = ''): if x is not None: assert isinstance(x, Tensor), f'{name} must be a torch.Tensor' m = f'{name} must have a computational graph.' if additional_err: m += f' {additional_err}' assert x.grad_fn is not None, m def log( self, name: str, value: Any, prog_bar: bool = False, logger: bool = True, on_step: bool = False, on_epoch: bool = True, reduce_fx: Callable = torch.mean, tbptt_reduce_fx: Callable = torch.mean, tbptt_pad_token: int = 0, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Union[Any, str] = 'mean', sync_dist_group: Optional[Any] = None, ): # no metrics should be logged with graphs if not enable_graph and isinstance(value, torch.Tensor): value = value.detach() # sync across ddp if sync_dist and isinstance(value, (torch.Tensor, numbers.Number)): value = sync_ddp_if_available(value, group=sync_dist_group, reduce_op=sync_dist_op) if 'meta' not in self: self.__setitem__('meta', {}) # if user requests both step and epoch, then we split the metric in two automatically # one will be logged per step. the other per epoch if on_step and on_epoch: # set step version step_name = f'step_{name}' self.__set_meta( step_name, value, prog_bar, logger, on_step=True, on_epoch=False, reduce_fx=reduce_fx, tbptt_reduce_fx=tbptt_reduce_fx, tbptt_pad_token=tbptt_pad_token, ) self.__setitem__(step_name, value) # set epoch version epoch_name = f'epoch_{name}' self.__set_meta( epoch_name, value, prog_bar, logger, on_step=False, on_epoch=True, reduce_fx=reduce_fx, tbptt_reduce_fx=tbptt_reduce_fx, tbptt_pad_token=tbptt_pad_token, ) self.__setitem__(epoch_name, value) else: self.__set_meta( name, value, prog_bar, logger, on_step, on_epoch, reduce_fx, tbptt_reduce_fx=tbptt_reduce_fx, tbptt_pad_token=tbptt_pad_token, ) # set the value self.__setitem__(name, value) def __set_meta( self, name: str, value: Any, prog_bar: bool, logger: bool, on_step: bool, on_epoch: bool, reduce_fx: Callable, tbptt_pad_token: int, tbptt_reduce_fx: Callable, ): # set the meta for the item meta_value = value meta = dict( prog_bar=prog_bar, logger=logger, on_step=on_step, on_epoch=on_epoch, reduce_fx=reduce_fx, value=meta_value, tbptt_reduce_fx=tbptt_reduce_fx, tbptt_pad_token=tbptt_pad_token, ) self['meta'][name] = meta # track whether any input requires reduction on epoch end _internal = self['meta']['_internal'] _internal['_reduce_on_epoch'] = max(_internal['_reduce_on_epoch'], on_epoch) def track_batch_size(self, batch_size): meta = self['meta'] meta['_internal']['batch_sizes'].append(batch_size) def get_batch_sizes(self): meta = self['meta'] return torch.tensor(meta['_internal']['batch_sizes']) def get_callback_metrics(self) -> dict: result = {'early_stop_on': self.early_stop_on, 'checkpoint_on': self.checkpoint_on} return result def get_batch_log_metrics(self) -> dict: """ Gets the metrics to log at the end of the batch step """ result = {} meta = self['meta'] for k, options in meta.items(): if k == '_internal': continue if options['logger'] and options['on_step']: result[k] = self[k] return result def get_epoch_log_metrics(self) -> dict: """ Gets the metrics to log at the end of the batch step """ result = {} meta = self['meta'] for k, options in meta.items(): if k == '_internal': continue if options['logger'] and options['on_epoch']: result[k] = self[k] return result def get_epoch_pbar_metrics(self): """ Gets the metrics to log at the end of the batch step """ result = {} meta = self['meta'] for k, options in meta.items(): if k == '_internal': continue if options['prog_bar'] and options['on_epoch']: result[k] = self[k] return result def get_batch_pbar_metrics(self): """ Gets the metrics to log at the end of the batch step """ result = {} meta = self['meta'] for k, options in meta.items(): if k == '_internal': continue if options['prog_bar'] and options['on_step']: result[k] = self[k] return result def detach(self): for k, v in self.items(): if isinstance(v, torch.Tensor): self.__setitem__(k, v.detach()) def __repr__(self): self_copy = self.copy() if 'meta' in self_copy: del self_copy['meta'] return str(self_copy) def __str__(self): copy = self.copy() del copy['meta'] return str(copy) def __copy__(self): newone = type(self)() for k, v in self.items(): if isinstance(v, torch.Tensor): v = v.detach() newone[k] = copy(v) return newone @classmethod def gather(cls, outputs): meta = outputs[0].get('meta') result = cls() result = recursive_gather(outputs, result) recursive_stack(result) if meta: result['meta'] = meta return result @classmethod def padded_gather(cls, outputs): meta = outputs[0].get('meta') result = cls() result = recursive_gather(outputs, result) # find the padding used for other values default_padding_idx = 0 for name, value in result.items(): if isinstance(value, list) and len(value) > 0 and isinstance(value[0], torch.Tensor): if name not in {'checkpoint_on', 'early_stop_on', 'minimize'}: default_padding_idx = meta[name]['tbptt_pad_token'] break # pad across each key individually for name, value in result.items(): is_reserved = name in {'checkpoint_on', 'early_stop_on', 'minimize'} if isinstance(value, list) and len(value) > 0 and isinstance(value[0], torch.Tensor): if is_reserved: padding_key = default_padding_idx else: padding_key = meta[name]['tbptt_pad_token'] padded = torch.nn.utils.rnn.pad_sequence(value, batch_first=True, padding_value=padding_key) result[name] = padded # also update the result if meta and not is_reserved: meta[name]['value'] = padded if meta: result['meta'] = meta return result @classmethod def reduce_on_epoch_end(cls, outputs): # get the batch sizes for all outputs batch_sizes = torch.stack([x.get_batch_sizes() for x in outputs]).view(-1) meta = outputs[0]['meta'] result = cls() result = recursive_gather(outputs, result) recursive_stack(result) for k, option in meta.items(): if k == '_internal': continue if option['on_epoch']: fx = option['reduce_fx'] if fx == torch.mean: reduced_val = weighted_mean(result[k], batch_sizes) else: reduced_val = fx(result[k]) result[k] = reduced_val result['meta'] = meta return result @classmethod def reduce_across_time(cls, time_outputs): # auto-reduce across time for tbptt meta = time_outputs[0]['meta'] result = cls() result = recursive_gather(time_outputs, result) recursive_stack(result) for k, value in result.items(): if k == 'meta': continue # pick the reduce fx if k in ['checkpoint_on', 'early_stop_on', 'minimize']: tbptt_reduce_fx = torch.mean else: tbptt_reduce_fx = meta[k]['tbptt_reduce_fx'] result[k] = tbptt_reduce_fx(value) result['meta'] = meta return result def dp_reduce(self): for k, value in self.items(): if k == 'meta': continue if isinstance(value, list): value = torch.tensor(value) self[k] = value.mean(dim=-1) @property def should_reduce_on_epoch_end(self) -> bool: return self['meta']['_internal']['_reduce_on_epoch'] def drop_hiddens(self): if 'hiddens' in self: del self['hiddens'] def rename_keys(self, map_dict: dict): """ Maps key values to the target values. Useful when renaming variables in mass. Args: map_dict: """ meta = self.meta for source, dest in map_dict.items(): # map the main keys self[dest] = self[source] del self[source] # map meta meta[dest] = meta[source] del meta[source] def recursive_gather(outputs: Sequence[dict], result: Optional[MutableMapping] = None) -> Optional[MutableMapping]: for out in outputs: if 'meta' in out: del out['meta'] for k, v in out.items(): if isinstance(v, dict): v = recursive_gather([v], result) if k not in result: result[k] = [] result[k].append(v) return result def recursive_stack(result: MutableMapping): for k, v in result.items(): if isinstance(v, dict): recursive_stack(v) result[k] = collate_tensors(v) def collate_tensors(items: Union[List, Tuple]) -> Union[Tensor, List, Tuple]: if not items or not isinstance(items, (list, tuple)) or any(not isinstance(item, Tensor) for item in items): # items is not a sequence, empty, or contains non-tensors return items if all(item.ndim == 0 for item in items): # all tensors are scalars, we need to stack return torch.stack(items) if all(item.ndim >= 1 and item.shape[1:] == items[0].shape[1:] for item in items): # we can concatenate along the first dimension return torch.cat(items) return items class TrainResult(Result): def __init__( self, minimize: Optional[Tensor] = None, early_stop_on: Tensor = None, checkpoint_on: Union[Tensor, bool] = None, hiddens: Optional[Tensor] = None, ): """ Used in train loop to auto-log to a logger or progress bar without needing to define a train_step_end or train_epoch_end method Example:: def training_step(self, batch, batch_idx): loss = ... result = pl.TrainResult(loss) result.log('train_loss', loss) return result # without val/test loop can model checkpoint or early stop def training_step(self, batch, batch_idx): loss = ... result = pl.TrainResult(loss, early_stop_on=loss, checkpoint_on=loss) result.log('train_loss', loss) return result Args: minimize: Metric currently being minimized. early_stop_on: Metric to early stop on. checkpoint_on: Metric to checkpoint on. hiddens: """ super().__init__(minimize, early_stop_on, checkpoint_on, hiddens) def log( self, name, value, prog_bar: bool = False, logger: bool = True, on_step: bool = True, on_epoch: bool = False, reduce_fx: Callable = torch.mean, tbptt_reduce_fx: Callable = torch.mean, tbptt_pad_token: int = 0, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Union[Any, str] = 'mean', sync_dist_group: Optional[Any] = None, ): """ Log a key, value Example:: result.log('train_loss', loss) # defaults used result.log( name, value, on_step=True, on_epoch=False, logger=True, prog_bar=False, reduce_fx=torch.mean, enable_graph=False ) Args: name: key name value: value name prog_bar: if True logs to the progress base logger: if True logs to the logger on_step: if True logs the output of validation_step or test_step on_epoch: if True, logs the output of the training loop aggregated reduce_fx: Torch.mean by default tbptt_reduce_fx: function to reduce on truncated back prop tbptt_pad_token: token to use for padding enable_graph: if True, will not auto detach the graph sync_dist: if True, reduces the metric across GPUs/TPUs sync_dist_op: the op to sync across sync_dist_group: the ddp group """ super().log( name=name, value=value, prog_bar=prog_bar, logger=logger, on_step=on_step, on_epoch=on_epoch, reduce_fx=reduce_fx, enable_graph=enable_graph, sync_dist=sync_dist, sync_dist_group=sync_dist_group, sync_dist_op=sync_dist_op, tbptt_pad_token=tbptt_pad_token, tbptt_reduce_fx=tbptt_reduce_fx, ) def log_dict( self, dictionary: dict, prog_bar: bool = False, logger: bool = True, on_step: bool = False, on_epoch: bool = True, reduce_fx: Callable = torch.mean, tbptt_reduce_fx: Callable = torch.mean, tbptt_pad_token: int = 0, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Union[Any, str] = 'mean', sync_dist_group: Optional[Any] = None, ): """ Log a dictonary of values at once Example:: values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} result.log_dict(values) Args: dictionary: key value pairs (str, tensors) prog_bar: if True logs to the progress base logger: if True logs to the logger on_step: if True logs the output of validation_step or test_step on_epoch: if True, logs the output of the training loop aggregated reduce_fx: Torch.mean by default tbptt_reduce_fx: function to reduce on truncated back prop tbptt_pad_token: token to use for padding enable_graph: if True, will not auto detach the graph sync_dist: if True, reduces the metric across GPUs/TPUs sync_dist_op: the op to sync across sync_dist_group: the ddp group: """ for k, v in dictionary.items(): self.log( name=k, value=v, prog_bar=prog_bar, logger=logger, on_step=on_step, on_epoch=on_epoch, reduce_fx=reduce_fx, enable_graph=enable_graph, sync_dist=sync_dist, sync_dist_group=sync_dist_group, sync_dist_op=sync_dist_op, tbptt_pad_token=tbptt_pad_token, tbptt_reduce_fx=tbptt_reduce_fx, ) class EvalResult(Result): def __init__( self, early_stop_on: Optional[Tensor] = None, checkpoint_on: Optional[Tensor] = None, hiddens: Optional[Tensor] = None, ): """ Used in val/train loop to auto-log to a logger or progress bar without needing to define a _step_end or _epoch_end method Example:: def validation_step(self, batch, batch_idx): loss = ... result = EvalResult() result.log('val_loss', loss) return result def test_step(self, batch, batch_idx): loss = ... result = EvalResult() result.log('val_loss', loss) return result Args: early_stop_on: Metric to early stop on. checkpoint_on: Metric to checkpoint on. hiddens: """ super().__init__(None, early_stop_on, checkpoint_on, hiddens) def log( self, name, value, prog_bar: bool = False, logger: bool = True, on_step: bool = False, on_epoch: bool = True, reduce_fx: Callable = torch.mean, tbptt_reduce_fx: Callable = torch.mean, tbptt_pad_token: int = 0, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Union[Any, str] = 'mean', sync_dist_group: Optional[Any] = None, ): """ Log a key, value Example:: result.log('val_loss', loss) # defaults used result.log( name, value, on_step=False, on_epoch=True, logger=True, prog_bar=False, reduce_fx=torch.mean ) Args: name: key name value: value name prog_bar: if True logs to the progress base logger: if True logs to the logger on_step: if True logs the output of validation_step or test_step on_epoch: if True, logs the output of the training loop aggregated reduce_fx: Torch.mean by default tbptt_reduce_fx: function to reduce on truncated back prop tbptt_pad_token: token to use for padding enable_graph: if True, will not auto detach the graph sync_dist: if True, reduces the metric across GPUs/TPUs sync_dist_op: the op to sync across sync_dist_group: the ddp group """ super().log( name=name, value=value, prog_bar=prog_bar, logger=logger, on_step=on_step, on_epoch=on_epoch, reduce_fx=reduce_fx, enable_graph=enable_graph, sync_dist=sync_dist, sync_dist_group=sync_dist_group, sync_dist_op=sync_dist_op, tbptt_pad_token=tbptt_pad_token, tbptt_reduce_fx=tbptt_reduce_fx, ) def log_dict( self, dictionary: dict, prog_bar: bool = False, logger: bool = True, on_step: bool = False, on_epoch: bool = True, reduce_fx: Callable = torch.mean, tbptt_reduce_fx: Callable = torch.mean, tbptt_pad_token: int = 0, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Union[Any, str] = 'mean', sync_dist_group: Optional[Any] = None, ): """ Log a dictonary of values at once Example:: values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} result.log_dict(values) Args: dictionary: key value pairs (str, tensors) prog_bar: if True logs to the progress base logger: if True logs to the logger on_step: if True logs the output of validation_step or test_step on_epoch: if True, logs the output of the training loop aggregated reduce_fx: Torch.mean by default tbptt_reduce_fx: function to reduce on truncated back prop tbptt_pad_token: token to use for padding enable_graph: if True, will not auto detach the graph sync_dist: if True, reduces the metric across GPUs/TPUs sync_dist_op: the op to sync across sync_dist_group: the ddp group """ for k, v in dictionary.items(): self.log( name=k, value=v, prog_bar=prog_bar, logger=logger, on_step=on_step, on_epoch=on_epoch, reduce_fx=reduce_fx, enable_graph=enable_graph, sync_dist=sync_dist, sync_dist_group=sync_dist_group, sync_dist_op=sync_dist_op, tbptt_pad_token=tbptt_pad_token, tbptt_reduce_fx=tbptt_reduce_fx, ) def get_callback_metrics(self) -> dict: result = {'val_early_stop_on': self.early_stop_on, 'val_checkpoint_on': self.checkpoint_on} return result def write(self, name: str, values: Union[Tensor, list], filename: str = 'predictions.pt'): """Add feature name and value pair to collection of predictions that will be written to disk on `validation_end` or `test_end`. If running on multiple GPUs, you will get separate `n_gpu` prediction files with the rank prepended onto filename. Example:: result = pl.EvalResult() result.write('ids', [0, 1, 2]) result.write('preds', ['cat', 'dog', 'dog']) Args: name: Feature name that will turn into column header of predictions file values: Flat tensor or list of row values for given feature column 'name'. filename: Filepath where your predictions will be saved. Defaults to 'predictions.pt'. """ # Type check the incoming arguments if not isinstance(name, str): raise ValueError(f"Expected str for 'name' but got {type(name)}") if not isinstance(filename, str): raise ValueError(f"Expected str for 'filename' but got {type(name)}") if isinstance(values, Tensor): values = values.detach() preds = getattr(self, 'predictions', None) if preds is None: self.predictions = {filename: {name: values}} elif filename not in preds: preds[filename] = {name: values} elif name not in preds[filename]: preds[filename][name] = values elif isinstance(values, Tensor): preds[filename][name] = torch.cat((preds[filename][name], values)) elif isinstance(values, list): preds[filename][name].extend(values) def write_dict(self, predictions_dict, filename='predictions.pt'): """Calls EvalResult.write() for each key-value pair in predictions_dict. It is recommended that you use this function call instead of .write if you need to store more than one column of predictions in your output file. Example:: predictions_to_write = {'preds': ['cat', 'dog'], 'ids': tensor([0, 1])} result.write_dict(predictions_to_write) Args: predictions_dict ([type]): Dict of predictions to store and then write to filename at eval end. filename (str, optional): File where your predictions will be stored. Defaults to './predictions.pt'. """ for k, v in predictions_dict.items(): self.write(k, v, filename) def weighted_mean(result, weights): weights = weights.to(result.device) numerator = torch.dot(result.float(), weights.transpose(-1, 0).float()) result = numerator / weights.sum().float() return result