from typing import Sequence import torch from pytorch_lightning.metrics.functional.reduction import reduce from torch.nn import functional as F def mse( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean', return_state: bool = False ) -> torch.Tensor: """ Computes mean squared error Args: pred: estimated labels target: ground truth labels reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: Tensor with MSE Example: >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mse(x, y) tensor(0.2500) """ mse = F.mse_loss(pred, target, reduction='none') if return_state: return {'squared_error': mse.sum(), 'n_observations': torch.tensor(mse.numel())} mse = reduce(mse, reduction=reduction) return mse def rmse( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean', return_state: bool = False ) -> torch.Tensor: """ Computes root mean squared error Args: pred: estimated labels target: ground truth labels reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: Tensor with RMSE >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> rmse(x, y) tensor(0.5000) """ mean_squared_error = mse(pred, target, reduction=reduction) if return_state: return {'squared_error': mean_squared_error.sum(), 'n_observations': torch.tensor(mean_squared_error.numel())} return torch.sqrt(mean_squared_error) def mae( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean', return_state: bool = False ) -> torch.Tensor: """ Computes mean absolute error Args: pred: estimated labels target: ground truth labels reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: Tensor with MAE Example: >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mae(x, y) tensor(0.2500) """ mae = F.l1_loss(pred, target, reduction='none') if return_state: return {'absolute_error': mae.sum(), 'n_observations': torch.tensor(mae.numel())} mae = reduce(mae, reduction=reduction) return mae def rmsle( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean' ) -> torch.Tensor: """ Computes root mean squared log error Args: pred: estimated labels target: ground truth labels reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied Return: Tensor with RMSLE Example: >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> rmsle(x, y) tensor(0.1438) """ rmsle = rmse(torch.log(pred + 1), torch.log(target + 1), reduction=reduction) return rmsle def psnr( pred: torch.Tensor, target: torch.Tensor, data_range: float = None, base: float = 10.0, reduction: str = 'elementwise_mean', return_state: bool = False ) -> torch.Tensor: """ Computes the peak signal-to-noise ratio Args: pred: estimated signal target: groun truth signal data_range: the range of the data. If None, it is determined from the data (max - min) base: a base of a logarithm to use (default: 10) reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: Tensor with PSNR score Example: >>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> psnr(pred, target) tensor(2.5527) """ if data_range is None: data_range = target.max() - target.min() else: data_range = torch.tensor(float(data_range)) if return_state: return {'data_range': data_range, 'sum_squared_error': F.mse_loss(pred, target, reduction='none').sum(), 'n_obs': torch.tensor(target.numel())} mse_score = mse(pred.view(-1), target.view(-1), reduction=reduction) psnr_base_e = 2 * torch.log(data_range) - torch.log(mse_score) psnr = psnr_base_e * (10 / torch.log(torch.tensor(base))) return psnr def _gaussian_kernel(channel, kernel_size, sigma, device): def _gaussian(kernel_size, sigma, device): gauss = torch.arange( start=(1 - kernel_size) / 2, end=(1 + kernel_size) / 2, step=1, dtype=torch.float32, device=device ) gauss = torch.exp(-gauss.pow(2) / (2 * pow(sigma, 2))) return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size) gaussian_kernel_x = _gaussian(kernel_size[0], sigma[0], device) gaussian_kernel_y = _gaussian(kernel_size[1], sigma[1], device) kernel = torch.matmul(gaussian_kernel_x.t(), gaussian_kernel_y) return kernel.expand(channel, 1, kernel_size[0], kernel_size[1]) def ssim( pred: torch.Tensor, target: torch.Tensor, kernel_size: Sequence[int] = (11, 11), sigma: Sequence[float] = (1.5, 1.5), reduction: str = "elementwise_mean", data_range: float = None, k1: float = 0.01, k2: float = 0.03 ) -> torch.Tensor: """ Computes Structual Similarity Index Measure Args: pred: estimated image target: ground truth image kernel_size: size of the gaussian kernel (default: (11, 11)) sigma: Standard deviation of the gaussian kernel (default: (1.5, 1.5)) reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied data_range: Range of the image. If ``None``, it is determined from the image (max - min) k1: Parameter of SSIM. Default: 0.01 k2: Parameter of SSIM. Default: 0.03 Return: Tensor with SSIM score Example: >>> pred = torch.rand([16, 1, 16, 16]) >>> target = pred * 0.75 >>> ssim(pred, target) tensor(0.9219) """ if pred.dtype != target.dtype: raise TypeError( "Expected `pred` and `target` to have the same data type." f" Got pred: {pred.dtype} and target: {target.dtype}." ) if pred.shape != target.shape: raise ValueError( "Expected `pred` and `target` to have the same shape." f" Got pred: {pred.shape} and target: {target.shape}." ) if len(pred.shape) != 4 or len(target.shape) != 4: raise ValueError( "Expected `pred` and `target` to have BxCxHxW shape." f" Got pred: {pred.shape} and target: {target.shape}." ) if len(kernel_size) != 2 or len(sigma) != 2: raise ValueError( "Expected `kernel_size` and `sigma` to have the length of two." f" Got kernel_size: {len(kernel_size)} and sigma: {len(sigma)}." ) if any(x % 2 == 0 or x <= 0 for x in kernel_size): raise ValueError(f"Expected `kernel_size` to have odd positive number. Got {kernel_size}.") if any(y <= 0 for y in sigma): raise ValueError(f"Expected `sigma` to have positive number. Got {sigma}.") if data_range is None: data_range = max(pred.max() - pred.min(), target.max() - target.min()) C1 = pow(k1 * data_range, 2) C2 = pow(k2 * data_range, 2) device = pred.device channel = pred.size(1) kernel = _gaussian_kernel(channel, kernel_size, sigma, device) # Concatenate # pred for mu_pred # target for mu_target # pred * pred for sigma_pred # target * target for sigma_target # pred * target for sigma_pred_target input_list = torch.cat([pred, target, pred * pred, target * target, pred * target]) # (5 * B, C, H, W) outputs = F.conv2d(input_list, kernel, groups=channel) output_list = [outputs[x * pred.size(0): (x + 1) * pred.size(0)] for x in range(len(outputs))] mu_pred_sq = output_list[0].pow(2) mu_target_sq = output_list[1].pow(2) mu_pred_target = output_list[0] * output_list[1] sigma_pred_sq = output_list[2] - mu_pred_sq sigma_target_sq = output_list[3] - mu_target_sq sigma_pred_target = output_list[4] - mu_pred_target UPPER = 2 * sigma_pred_target + C2 LOWER = sigma_pred_sq + sigma_target_sq + C2 ssim_idx = ((2 * mu_pred_target + C1) * UPPER) / ((mu_pred_sq + mu_target_sq + C1) * LOWER) return reduce(ssim_idx, reduction)