import torch import gc import subprocess import numpy as np import pandas as pd ''' Generates a summary of a model's layers and dimensionality ''' class ModelSummary(object): def __init__(self, model): ''' Generates summaries of model layers and dimensions. ''' self.model = model self.in_sizes = [] self.out_sizes = [] self.summarize() def __str__(self): return self.summary.__str__() def __repr__(self): return self.summary.__str__() def get_variable_sizes(self): '''Run sample input through each layer to get output sizes''' mods = list(self.model.modules()) in_sizes = [] out_sizes = [] input_ = self.model.example_input_array for i in range(1, len(mods)): m = mods[i] if type(input_) is list or type(input_) is tuple: out = m(*input_) else: out = m(input_) if type(input_) is tuple or type(input_) is list: in_size = [] for x in input_: if type(x) is list: in_size.append(len(x)) else: in_size.append(x.size()) else: in_size = np.array(input_.size()) in_sizes.append(in_size) if type(out) is tuple or type(out) is list: out_size = np.asarray([x.size() for x in out]) else: out_size = np.array(out.size()) out_sizes.append(out_size) input_ = out self.in_sizes = in_sizes self.out_sizes = out_sizes return def get_layer_names(self): '''Collect Layer Names''' mods = list(self.model.named_modules()) names = [] layers = [] for m in mods[1:]: names += [m[0]] layers += [str(m[1].__class__)] layer_types = [x.split('.')[-1][:-2] for x in layers] self.layer_names = names self.layer_types = layer_types return def get_parameter_sizes(self): '''Get sizes of all parameters in `model`''' mods = list(self.model.modules()) sizes = [] for i in range(1,len(mods)): m = mods[i] p = list(m.parameters()) modsz = [] for j in range(len(p)): modsz.append(np.array(p[j].size())) sizes.append(modsz) self.param_sizes = sizes return def get_parameter_nums(self): '''Get number of parameters in each layer''' param_nums = [] for mod in self.param_sizes: all_params = 0 for p in mod: all_params += np.prod(p) param_nums.append(all_params) self.param_nums = param_nums return def make_summary(self): ''' Makes a summary listing with: Layer Name, Layer Type, Input Size, Output Size, Number of Parameters ''' df = pd.DataFrame( np.zeros( (len(self.layer_names), 3) ) ) df.columns = ['Name', 'Type', 'Params'] df['Name'] = self.layer_names df['Type'] = self.layer_types df['Params'] = self.param_nums if self.model.example_input_array: df.columns.extend(['In_sizes', 'Out_sizes']) df['In_sizes'] = self.in_sizes df['Out_sizes'] = self.out_sizes self.summary = df return def summarize(self): self.get_layer_names() self.get_parameter_sizes() self.get_parameter_nums() if self.model.example_input_array: self.get_variable_sizes() self.make_summary() def print_mem_stack(): for obj in gc.get_objects(): try: if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): print(type(obj), obj.size()) except Exception as e: pass def count_mem_items(): nb_params = 0 nb_tensors = 0 for obj in gc.get_objects(): try: if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): obj_type = str(type(obj)) if 'parameter' in obj_type: nb_params += 1 else: nb_tensors += 1 except Exception as e: pass return nb_params, nb_tensors def get_gpu_memory_map(): """Get the current gpu usage. Returns ------- usage: dict Keys are device ids as integers. Values are memory usage as integers in MB. """ result = subprocess.check_output( [ 'nvidia-smi', '--query-gpu=memory.used', '--format=csv,nounits,noheader' ], encoding='utf-8') # Convert lines into a dictionary gpu_memory = [int(x) for x in result.strip().split('\n')] gpu_memory_map = {} for k, v in zip(range(len(gpu_memory)), gpu_memory): k = f'gpu_{k}' gpu_memory_map[k] = v return gpu_memory_map