# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Optional, Union from torch import Tensor from torch.nn import Module from torch.optim import Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin from pytorch_lightning.utilities import GradClipAlgorithmType from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.warnings import WarningCache warning_cache = WarningCache() class DeepSpeedPrecisionPlugin(PrecisionPlugin): """ Precision plugin for DeepSpeed integration. """ def __init__(self, precision: int) -> None: super().__init__() self.precision = precision def pre_optimizer_step( self, pl_module: 'pl.LightningModule', optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any, ) -> bool: deepspeed_engine = pl_module.trainer.model # DeepSpeed not support closures. lambda_closure() if not pl_module.automatic_optimization: pl_module.trainer.call_hook("on_after_backward") deepspeed_engine.step() return False def backward( self, model: 'pl.LightningModule', closure_loss: Tensor, optimizer: Optimizer, opt_idx: int, should_accumulate: bool, *args: Any, **kwargs: Any, ) -> Tensor: if is_overridden('backward', model): warning_cache.warn( "Overridden backward hook in the LightningModule will be ignored since DeepSpeed handles" "backward logic outside of the LightningModule" ) # todo: hack around for deepspeed engine to call backward deepspeed_engine = model.trainer.model deepspeed_engine.backward(closure_loss, *args, **kwargs) # once backward has been applied, release graph closure_loss = closure_loss.detach() return closure_loss def clip_gradients( self, optimizer: Optimizer, clip_val: Union[int, float], gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM, model: Optional[Module] = None, ) -> None: """ DeepSpeed handles clipping gradients internally via the training type plugin. """ pass