# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from argparse import ArgumentParser, Namespace from contextlib import suppress from typing import Any, Dict, List, Tuple, Union from pytorch_lightning.utilities.parsing import str_to_bool, str_to_bool_or_str def from_argparse_args(cls, args: Union[Namespace, ArgumentParser], **kwargs): """ Create an instance from CLI arguments. Eventually use varibles from OS environement which are defined as "PL__" Args: cls: Lightning class args: The parser or namespace to take arguments from. Only known arguments will be parsed and passed to the :class:`Trainer`. **kwargs: Additional keyword arguments that may override ones in the parser or namespace. These must be valid Trainer arguments. Example: >>> from pytorch_lightning import Trainer >>> parser = ArgumentParser(add_help=False) >>> parser = Trainer.add_argparse_args(parser) >>> parser.add_argument('--my_custom_arg', default='something') # doctest: +SKIP >>> args = Trainer.parse_argparser(parser.parse_args("")) >>> trainer = Trainer.from_argparse_args(args, logger=False) """ if isinstance(args, ArgumentParser): args = cls.parse_argparser(args) params = vars(args) # we only want to pass in valid Trainer args, the rest may be user specific valid_kwargs = inspect.signature(cls.__init__).parameters trainer_kwargs = dict((name, params[name]) for name in valid_kwargs if name in params) trainer_kwargs.update(**kwargs) return cls(**trainer_kwargs) def parse_argparser(cls, arg_parser: Union[ArgumentParser, Namespace]) -> Namespace: """Parse CLI arguments, required for custom bool types.""" args = arg_parser.parse_args() if isinstance(arg_parser, ArgumentParser) else arg_parser types_default = {arg: (arg_types, arg_default) for arg, arg_types, arg_default in get_init_arguments_and_types(cls)} modified_args = {} for k, v in vars(args).items(): if k in types_default and v is None: # We need to figure out if the None is due to using nargs="?" or if it comes from the default value arg_types, arg_default = types_default[k] if bool in arg_types and isinstance(arg_default, bool): # Value has been passed as a flag => It is currently None, so we need to set it to True # We always set to True, regardless of the default value. # Users must pass False directly, but when passing nothing True is assumed. # i.e. the only way to disable somthing that defaults to True is to use the long form: # "--a_default_true_arg False" becomes False, while "--a_default_false_arg" becomes None, # which then becomes True here. v = True modified_args[k] = v return Namespace(**modified_args) def parse_env_variables(cls, template: str = "PL_%(cls_name)s_%(cls_argument)s") -> Namespace: """Parse environment arguments if they are defined. Example: >>> from pytorch_lightning import Trainer >>> parse_env_variables(Trainer) Namespace() >>> import os >>> os.environ["PL_TRAINER_GPUS"] = '42' >>> os.environ["PL_TRAINER_BLABLABLA"] = '1.23' >>> parse_env_variables(Trainer) Namespace(gpus=42) >>> del os.environ["PL_TRAINER_GPUS"] """ cls_arg_defaults = get_init_arguments_and_types(cls) env_args = {} for arg_name, _, _ in cls_arg_defaults: env = template % {'cls_name': cls.__name__.upper(), 'cls_argument': arg_name.upper()} val = os.environ.get(env) if not (val is None or val == ''): # todo: specify the possible exception with suppress(Exception): # converting to native types like int/float/bool val = eval(val) env_args[arg_name] = val return Namespace(**env_args) def get_init_arguments_and_types(cls) -> List[Tuple[str, Tuple, Any]]: r"""Scans the Trainer signature and returns argument names, types and default values. Returns: List with tuples of 3 values: (argument name, set with argument types, argument default value). Examples: >>> from pytorch_lightning import Trainer >>> args = get_init_arguments_and_types(Trainer) """ trainer_default_params = inspect.signature(cls).parameters name_type_default = [] for arg in trainer_default_params: arg_type = trainer_default_params[arg].annotation arg_default = trainer_default_params[arg].default try: arg_types = tuple(arg_type.__args__) except AttributeError: arg_types = (arg_type, ) name_type_default.append((arg, arg_types, arg_default)) return name_type_default def add_argparse_args(cls, parent_parser: ArgumentParser) -> ArgumentParser: r"""Extends existing argparse by default `Trainer` attributes. Args: cls: Lightning class parent_parser: The custom cli arguments parser, which will be extended by the Trainer default arguments. Only arguments of the allowed types (str, float, int, bool) will extend the `parent_parser`. Examples: >>> import argparse >>> from pytorch_lightning import Trainer >>> parser = argparse.ArgumentParser() >>> parser = Trainer.add_argparse_args(parser) >>> args = parser.parse_args([]) """ parser = ArgumentParser( parents=[parent_parser], add_help=False, ) blacklist = ['kwargs'] depr_arg_names = cls.get_deprecated_arg_names() + blacklist allowed_types = (str, int, float, bool) args_help = parse_args_from_docstring(cls.__init__.__doc__ or cls.__doc__) for arg, arg_types, arg_default in (at for at in get_init_arguments_and_types(cls) if at[0] not in depr_arg_names): arg_types = [at for at in allowed_types if at in arg_types] if not arg_types: # skip argument with not supported type continue arg_kwargs = {} if bool in arg_types: arg_kwargs.update(nargs="?", const=True) # if the only arg type is bool if len(arg_types) == 1: use_type = str_to_bool elif str in arg_types: use_type = str_to_bool_or_str else: # filter out the bool as we need to use more general use_type = [at for at in arg_types if at is not bool][0] else: use_type = arg_types[0] if arg == 'gpus' or arg == 'tpu_cores': use_type = _gpus_allowed_type arg_default = _gpus_arg_default # hack for types in (int, float) if len(arg_types) == 2 and int in set(arg_types) and float in set(arg_types): use_type = _int_or_float_type # hack for track_grad_norm if arg == 'track_grad_norm': use_type = float parser.add_argument( f'--{arg}', dest=arg, default=arg_default, type=use_type, help=args_help.get(arg), **arg_kwargs, ) return parser def parse_args_from_docstring(docstring: str) -> Dict[str, str]: arg_block_indent = None current_arg = None parsed = {} for line in docstring.split("\n"): stripped = line.lstrip() if not stripped: continue line_indent = len(line) - len(stripped) if stripped.startswith(('Args:', 'Arguments:', 'Parameters:')): arg_block_indent = line_indent + 4 elif arg_block_indent is None: continue elif line_indent < arg_block_indent: break elif line_indent == arg_block_indent: current_arg, arg_description = stripped.split(':', maxsplit=1) parsed[current_arg] = arg_description.lstrip() elif line_indent > arg_block_indent: parsed[current_arg] += f' {stripped}' return parsed def _gpus_allowed_type(x) -> Union[int, str]: if ',' in x: return str(x) else: return int(x) def _gpus_arg_default(x) -> Union[int, str]: if ',' in x: return str(x) else: return int(x) def _int_or_float_type(x) -> Union[int, float]: if '.' in str(x): return float(x) else: return int(x)