# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import torch from pytorch_lightning import Trainer from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.strategies import SingleDeviceStrategy from tests.helpers.boring_model import BoringModel from tests.helpers.runif import RunIf def test_single_cpu(): """Tests if device is set correctly for single CPU strategy.""" trainer = Trainer() assert isinstance(trainer.strategy, SingleDeviceStrategy) assert trainer.strategy.root_device == torch.device("cpu") class BoringModelGPU(BoringModel): def on_train_start(self) -> None: # make sure that the model is on GPU when training assert self.device == torch.device("cuda:0") self.start_cuda_memory = torch.cuda.memory_allocated() @RunIf(skip_windows=True, min_gpus=1) def test_single_gpu(): """Tests if device is set correctly when training and after teardown for single GPU strategy.""" trainer = Trainer(gpus=1, fast_dev_run=True) # assert training strategy attributes for device setting assert isinstance(trainer.strategy, SingleDeviceStrategy) assert trainer.strategy.root_device == torch.device("cuda:0") model = BoringModelGPU() trainer.fit(model) # assert after training, model is moved to CPU and memory is deallocated assert model.device == torch.device("cpu") cuda_memory = torch.cuda.memory_allocated() assert cuda_memory < model.start_cuda_memory class MockOptimizer: ... def test_strategy_pickle(): strategy = SingleDeviceStrategy("cpu") optimizer = MockOptimizer() strategy.optimizers = [optimizer] assert isinstance(strategy.optimizers[0], MockOptimizer) assert isinstance(strategy._lightning_optimizers[0], LightningOptimizer) state = pickle.dumps(strategy) # dumping did not get rid of the lightning optimizers assert isinstance(strategy._lightning_optimizers[0], LightningOptimizer) strategy_reloaded = pickle.loads(state) # loading restores the lightning optimizers assert isinstance(strategy_reloaded._lightning_optimizers[0], LightningOptimizer)