import os import sys import numpy as np from time import sleep import torch from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster from pytorch_lightning.models.trainer import Trainer from pytorch_lightning.utils.arg_parse import add_default_args from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint SEED = 2334 torch.manual_seed(SEED) np.random.seed(SEED) # --------------------- # DEFINE MODEL HERE # --------------------- from lightning_module_template import LightningTemplateModel # --------------------- AVAILABLE_MODELS = { 'model_template': LightningTemplateModel } """ Allows training by using command line arguments Run by: # TYPE YOUR RUN COMMAND HERE """ def main_local(hparams): main(hparams, None, None) def main(hparams, cluster, results_dict): """ Main training routine specific for this project :param hparams: :return: """ on_gpu = hparams.gpus is not None and torch.cuda.is_available() device = 'cuda' if on_gpu else 'cpu' hparams.__setattr__('device', device) hparams.__setattr__('on_gpu', on_gpu) hparams.__setattr__('nb_gpus', torch.cuda.device_count()) hparams.__setattr__('inference_mode', hparams.model_load_weights_path is not None) # delay each training start to not overwrite logs process_position, current_gpu = TRAINING_MODEL.get_process_position(hparams.gpus) sleep(process_position + 1) # init experiment log_dir = os.path.dirname(os.path.realpath(__file__)) log_dir = os.path.join(log_dir, 'test_tube_demo_logs') exp = Experiment( name='test_tube_exp', save_dir=log_dir, autosave=False, description='test demo' ) exp.argparse(hparams) exp.save() # build model print('loading model...') model = TRAINING_MODEL(hparams) print('model built') # callbacks early_stop = EarlyStopping( monitor=hparams.early_stop_metric, patience=hparams.early_stop_patience, verbose=True, mode=hparams.early_stop_mode ) model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version) checkpoint = ModelCheckpoint( filepath=model_save_path, save_best_only=True, verbose=True, monitor=hparams.model_save_monitor_value, mode=hparams.model_save_monitor_mode ) # gpus are ; separated for inside a node and , within nodes gpu_list = None if hparams.gpus is not None: gpu_list = [int(x) for x in hparams.gpus.split(';')] # configure trainer trainer = Trainer( experiment=exp, cluster=cluster, checkpoint_callback=checkpoint, early_stop_callback=early_stop, gpus=gpu_list, nb_gpu_nodes=1 ) # train model trainer.fit(model) def get_default_parser(strategy, root_dir): possible_model_names = list(AVAILABLE_MODELS.keys()) parser = HyperOptArgumentParser(strategy=strategy, add_help=False) add_default_args(parser, root_dir, possible_model_names=possible_model_names, rand_seed=SEED) return parser def get_model_name(args): for i, arg in enumerate(args): if 'model_name' in arg: return args[i+1] def optimize_on_cluster(hyperparams): # enable cluster training cluster = SlurmCluster( hyperparam_optimizer=hyperparams, log_path=hyperparams.tt_save_path, test_tube_exp_name=hyperparams.tt_name ) # email for cluster coms cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True) # configure cluster cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus cluster.job_time = '48:00:00' cluster.gpu_type = '1080ti' cluster.memory_mb_per_node = 48000 # any modules for code to run in env cluster.add_command('source activate pytorch_lightning') # name of exp job_display_name = hyperparams.tt_name.split('_')[0] job_display_name = job_display_name[0:3] # run hopt print('submitting jobs...') cluster.optimize_parallel_cluster_gpu( main, nb_trials=hyperparams.nb_hopt_trials, job_name=job_display_name ) if __name__ == '__main__': model_name = get_model_name(sys.argv) if model_name is None: model_name = 'model_template' # use default args root_dir = os.path.dirname(os.path.realpath(__file__)) parent_parser = get_default_parser(strategy='random_search', root_dir=root_dir) # allow model to overwrite or extend args TRAINING_MODEL = AVAILABLE_MODELS[model_name] parser = TRAINING_MODEL.add_model_specific_args(parent_parser, root_dir) hyperparams = parser.parse_args() # format GPU layout os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # --------------------- # RUN TRAINING # --------------------- # cluster and CPU if hyperparams.on_cluster: # run on HPC cluster print('RUNNING ON SLURM CLUSTER') gpu_ids = hyperparams.gpus.split(';') os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu_ids) optimize_on_cluster(hyperparams) elif hyperparams.gpus is None: # run on cpu print('RUNNING ON CPU') main(hyperparams, None, None) # single or multiple GPUs on same machine gpu_ids = hyperparams.gpus.split(';') if hyperparams.interactive: # run on 1 gpu print(f'RUNNING INTERACTIVE MODE ON GPUS. gpu ids: {gpu_ids}') os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu_ids) main(hyperparams, None, None) else: # multiple GPUs on same machine print(f'RUNNING MULTI GPU. GPU ids: {gpu_ids}') hyperparams.optimize_parallel_gpu( main_local, gpu_ids=gpu_ids, nb_trials=hyperparams.nb_hopt_trials, nb_workers=len(gpu_ids) )