import collections import logging as log import csv import os import warnings from abc import ABC, abstractmethod from argparse import Namespace import torch import torch.distributed as dist from pytorch_lightning.core.decorators import data_loader from pytorch_lightning.core.grads import GradInformation from pytorch_lightning.core.hooks import ModelHooks from pytorch_lightning.core.saving import ModelIO from pytorch_lightning.core.memory import ModelSummary from pytorch_lightning.overrides.data_parallel import LightningDistributedDataParallel class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): def __init__(self, *args, **kwargs): super(LightningModule, self).__init__(*args, **kwargs) #: Current dtype self.dtype = torch.FloatTensor self.exp_save_path = None #: The current epoch self.current_epoch = 0 #: Total training batches seen across all epochs self.global_step = 0 self.loaded_optimizer_states_dict = {} #: Pointer to the trainer object self.trainer = None #: Pointer to the logger object self.logger = None self.example_input_array = None #: True if your model is currently running on GPUs. #: Useful to set flags around the LightningModule for different CPU vs GPU behavior. self.on_gpu = False #: True if using dp self.use_dp = False #: True if using ddp self.use_ddp = False #: True if using ddp2 self.use_ddp2 = False #: True if using amp self.use_amp = False @abstractmethod def forward(self, *args, **kwargs): r""" Same as torch.nn.Module.forward(), however in Lightning you want this to define the operations you want to use for prediction (ie: on a server or as a feature extractor). Normally you'd call self.forward() from your training_step() method. This makes it easy to write a complex system for training with the outputs you'd want in a prediction setting. Args: x (tensor): Whatever you decide to define in the forward method Return: Predicted output Example ------- .. code-block:: python # example if we were using this model as a feature extractor def forward(self, x): feature_maps = self.convnet(x) return feature_maps def training_step(self, batch, batch_idx): x, y = batch feature_maps = self.forward(x) logits = self.classifier(feature_maps) # ... return loss # splitting it this way allows model to be used a feature extractor model = MyModelAbove() inputs = server.get_request() results = model(inputs) server.write_results(results) # ------------- # This is in stark contrast to torch.nn.Module where normally you would have this: def forward(self, batch): x, y = batch feature_maps = self.convnet(x) logits = self.classifier(feature_maps) return logits """ @abstractmethod def training_step(self, *args, **kwargs): """return loss, dict with metrics for tqdm :param batch: The output of your dataloader. A tensor, tuple or list :param int batch_idx: Integer displaying which batch this is :return: dict with loss key and optional log, progress keys if implementing training_step, return whatever you need in that step: - loss -> tensor scalar [REQUIRED] - progress_bar -> Dict for progress bar display. Must have only tensors - log -> Dict of metrics to add to logger. Must have only tensors (no images, etc) In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something specific to your model. Example ------- .. code-block:: python def training_step(self, batch, batch_idx): x, y, z = batch # implement your own out = self.forward(x) loss = self.loss(out, x) logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS) # if using TestTubeLogger or TensorBoardLogger you can nest scalars logger_logs = {'losses': logger_logs} # optional (MUST ALL BE TENSORS) output = { 'loss': loss, # required 'progress_bar': {'training_loss': loss}, # optional (MUST ALL BE TENSORS) 'log': logger_logs } # return a dict return output If you define multiple optimizers, this step will also be called with an additional `optimizer_idx` param. .. code-block:: python # Multiple optimizers (ie: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder if optimizer_idx == 1: # do training_step with decoder If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step. .. code-block:: python # Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hiddens from the previous truncated backprop step You can also return a -1 instead of a dict to stop the current loop. This is useful if you want to break out of the current training epoch early. """ def training_end(self, *args, **kwargs): """return loss, dict with metrics for tqdm :param outputs: What you return in `training_step`. :return dict: dictionary with loss key and optional log, progress keys: - loss -> tensor scalar [REQUIRED] - progress_bar -> Dict for progress bar display. Must have only tensors - log -> Dict of metrics to add to logger. Must have only tensors (no images, etc) In certain cases (dp, ddp2), you might want to use all outputs of every process to do something. For instance, if using negative samples, you could run a batch via dp and use ALL the outputs for a single softmax across the full batch (ie: the denominator would use the full batch). In this case you should define training_end to perform those calculations. Example ------- .. code-block:: python # WITHOUT training_end # if used in DP or DDP2, this batch is 1/num_gpus large def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.forward(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with training_end to do softmax over the full batch def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.forward(x) return {'out': out} def training_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} If you define multiple optimizers, this step will also be called with an additional `optimizer_idx` param. .. code-block:: python # Multiple optimizers (ie: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder if optimizer_idx == 1: # do training_step with decoder If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step. .. code-block:: python # Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hiddens from the previous truncated backprop step You can also return a -1 instead of a dict to stop the current loop. This is useful if you want to break out of the current training epoch early. """ pass def validation_step(self, *args, **kwargs): r""" This is the validation loop. It is called for each batch of the validation set. Whatever is returned from here will be passed in as a list on validation_end. In this step you'd normally generate examples or calculate anything of interest such as accuracy. Args: batch (torch.nn.Tensor | (Tensor, Tensor) | [Tensor, Tensor]): The output of your dataloader. A tensor, tuple or list batch_idx (int): The index of this batch dataloader_idx (int): The index of the dataloader that produced this batch (only if multiple val datasets used) Return: Dict or OrderedDict - passed to the validation_end step .. code-block:: python # if you have one val dataloader: def validation_step(self, batch, batch_idx) # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idxdx) Example ------- .. code-block:: python # CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self.forward(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function validation_end output = OrderedDict({ 'val_loss': loss_val, 'val_acc': torch.tensor(val_acc), # everything must be a tensor }) # return an optional dict return output If you pass in multiple validation datasets, validation_step will have an additional argument. .. code-block:: python # CASE 2: multiple validation datasets def validation_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is. .. note:: If you don't need to validate you don't need to implement this method. .. note:: When the validation_step is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, model goes back to training mode and gradients are enabled. """ pass def test_step(self, *args, **kwargs): """return whatever outputs will need to be aggregated in test_end :param batch: The output of your dataloader. A tensor, tuple or list :param int batch_idx: Integer displaying which batch this is :param int dataloader_idx: Integer displaying which dataloader this is (only if multiple test datasets used) :return dict: Dict or OrderedDict with metrics to display in progress bar. All keys must be tensors. .. code-block:: python # if you have one test dataloader: def test_step(self, batch, batch_idx) # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idxdx) **OPTIONAL** If you don't need to test you don't need to implement this method. In this step you'd normally generate examples or calculate anything of interest such as accuracy. When the validation_step is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, model goes back to training mode and gradients are enabled. The dict you return here will be available in the `test_end` method. This function is used when you execute `trainer.test()`. Example ------- .. code-block:: python # CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self.forward(x) loss = self.loss(out, y) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function test_end output = OrderedDict({ 'test_loss': loss_test, 'test_acc': torch.tensor(test_acc), # everything must be a tensor }) # return an optional dict return output If you pass in multiple test datasets, `test_step` will have an additional argument. .. code-block:: python # CASE 2: multiple test datasets def test_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is. The `dataset_idx` corresponds to the order of datasets returned in `test_dataloader`. """ pass def validation_end(self, outputs): """Outputs has the appended output after each validation step. :param outputs: List of outputs you defined in validation_step, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader :return dict: Dictionary or OrderedDict with optional: progress_bar -> Dict for progress bar display. Must have only tensors log -> Dict of metrics to add to logger. Must have only tensors (no images, etc) If you didn't define a validation_step, this won't be called. Called at the end of the validation loop with the outputs of validation_step. The outputs here are strictly for the progress bar. If you don't need to display anything, don't return anything. Any keys present in 'log', 'progress_bar' or the rest of the dictionary are available for callbacks to access. Example ------- With a single dataloader .. code-block:: python def validation_end(self, outputs): val_loss_mean = 0 val_acc_mean = 0 for output in outputs: val_loss_mean += output['val_loss'] val_acc_mean += output['val_acc'] val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} # show val_loss and val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_loss': val_loss_mean.item()} } return results With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader. .. code-block:: python def validation_end(self, outputs): val_loss_mean = 0 val_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: val_loss_mean += output['val_loss'] val_acc_mean += output['val_acc'] i += 1 val_loss_mean /= i val_acc_mean /= i tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} # show val_loss and val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_loss': val_loss_mean.item()} } return results """ pass def test_end(self, outputs): """Outputs has the appended output after each test step. :param outputs: List of outputs you defined in test_step, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader :return dict: Dict of OrderedDict with metrics to display in progress bar If you didn't define a test_step, this won't be called. Called at the end of the test step with the output of each test_step. The outputs here are strictly for the progress bar. If you don't need to display anything, don't return anything. Example ------- .. code-block:: python def test_end(self, outputs): test_loss_mean = 0 test_acc_mean = 0 for output in outputs: test_loss_mean += output['test_loss'] test_acc_mean += output['test_acc'] test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_loss': val_loss_mean.item()} } return results With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader. .. code-block:: python def test_end(self, outputs): test_loss_mean = 0 test_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: test_loss_mean += output['test_loss'] test_acc_mean += output['test_acc'] i += 1 test_loss_mean /= i test_acc_mean /= i tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_loss': val_loss_mean.item()} } return results """ pass def configure_ddp(self, model, device_ids): r""" Override to init DDP in your own way or with your own wrapper. The only requirements are that: 1. On a validation batch the call goes to model.validation_step. 2. On a training batch the call goes to model.training_step. 3. On a testing batch, the call goes to model.test_step Args: model (LightningModule): the LightningModule currently being optimized device_ids (list): the list of GPU ids Return: DDP wrapped model Example ------- .. code-block:: python # default implementation used in Trainer def configure_ddp(self, model, device_ids): # Lightning DDP simply routes to test_step, val_step, etc... model = LightningDistributedDataParallel( model, device_ids=device_ids, find_unused_parameters=True ) return model """ model = LightningDistributedDataParallel( model, device_ids=device_ids, find_unused_parameters=True ) return model def init_ddp_connection(self, proc_rank, world_size): r""" Override to define your custom way of setting up a distributed environment. Lightning's implementation uses env:// init by default and sets the first node as root. Args: proc_rank (int): The current process rank within the node. world_size (int): Number of GPUs being use across all nodes. (num_nodes*nb_gpu_nodes). Example ------- .. code-block:: python def init_ddp_connection(self): # use slurm job id for the port number # guarantees unique ports across jobs from same grid search try: # use the last 4 numbers in the job id as the id default_port = os.environ['SLURM_JOB_ID'] default_port = default_port[-4:] # all ports should be in the 10k+ range default_port = int(default_port) + 15000 except Exception as e: default_port = 12910 # if user gave a port number, use that one instead try: default_port = os.environ['MASTER_PORT'] except Exception: os.environ['MASTER_PORT'] = str(default_port) # figure out the root node addr try: root_node = os.environ['SLURM_NODELIST'].split(' ')[0] except Exception: root_node = '127.0.0.2' root_node = self.trainer.resolve_root_node_address(root_node) os.environ['MASTER_ADDR'] = root_node dist.init_process_group( 'nccl', rank=self.proc_rank, world_size=self.world_size ) """ # use slurm job id for the port number # guarantees unique ports across jobs from same grid search try: # use the last 4 numbers in the job id as the id default_port = os.environ['SLURM_JOB_ID'] default_port = default_port[-4:] # all ports should be in the 10k+ range default_port = int(default_port) + 15000 except Exception: default_port = 12910 # if user gave a port number, use that one instead try: default_port = os.environ['MASTER_PORT'] except Exception: os.environ['MASTER_PORT'] = str(default_port) # figure out the root node addr try: root_node = os.environ['SLURM_NODELIST'].split(' ')[0] except Exception: root_node = '127.0.0.2' root_node = self.trainer.resolve_root_node_address(root_node) os.environ['MASTER_ADDR'] = root_node dist.init_process_group('nccl', rank=proc_rank, world_size=world_size) def configure_apex(self, amp, model, optimizers, amp_level): r""" Override to init AMP your own way Must return a model and list of optimizers Args: amp (object): pointer to amp library object model (LightningModule): pointer to current lightningModule optimizers (list): list of optimizers passed in configure_optimizers() amp_level (str): AMP mode chosen ('O1', 'O2', etc...) Return: Apex wrapped model and optimizers Example ------- .. code-block:: python # Default implementation used by Trainer. def configure_apex(self, amp, model, optimizers, amp_level): model, optimizers = amp.initialize( model, optimizers, opt_level=amp_level, ) return model, optimizers """ model, optimizers = amp.initialize( model, optimizers, opt_level=amp_level, ) return model, optimizers @abstractmethod def configure_optimizers(self): r""" This is where you choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or something more esoteric you might have multiple. Return: any of these 3 options: - Single optimizer - List or Tuple - List of optimizers - Two lists - The first list has multiple optimizers, the second a list of learning-rate schedulers Example ------- .. code-block:: python # most cases def configure_optimizers(self): opt = Adam(self.parameters(), lr=0.01) return opt # multiple optimizer case (eg: GAN) def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) return generator_opt, disriminator_opt # example with learning_rate schedulers def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10) return [generator_opt, disriminator_opt], [discriminator_sched] .. note:: Lightning calls .backward() and .step() on each optimizer and learning rate scheduler as needed. .. note:: If you use 16-bit precision (use_amp=True), Lightning will automatically handle the optimizers for you. .. note:: If you use multiple optimizers, training_step will have an additional `optimizer_idx` parameter. .. note:: If you use LBFGS lightning handles the closure function automatically for you .. note:: If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step. .. note:: If you need to control how often those optimizers step or override the default .step() schedule, override the `optimizer_step` hook. """ def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): r""" Override this method to adjust the default way the Trainer calls each optimizer. By default, Lightning calls .step() and zero_grad() as shown in the example once per optimizer. Args: epoch (int): Current epoch batch_idx (int): Index of current batch optimizer (torch.nn.Optimizer): A PyTorch optimizer optimizer_idx (int): If you used multiple optimizers this indexes into that list second_order_closure (int): closure for second order methods Example ------- .. code-block:: python # DEFAULT def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): optimizer.step() optimizer.zero_grad() # Alternating schedule for optimizer steps (ie: GANs) def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # update generator opt every 2 steps if optimizer_idx == 0: if batch_idx % 2 == 0 : optimizer.step() optimizer.zero_grad() # update discriminator opt every 4 steps if optimizer_idx == 1: if batch_idx % 4 == 0 : optimizer.step() optimizer.zero_grad() # ... # add as many optimizers as you want Here's another example showing how to use this for more advanced things such as learning-rate warm-up: .. code-block:: python # learning rate warm-up def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # warm up lr if self.trainer.global_step < 500: lr_scale = min(1., float(self.trainer.global_step + 1) / 500.) for pg in optimizer.param_groups: pg['lr'] = lr_scale * self.hparams.learning_rate # update params optimizer.step() optimizer.zero_grad() """ if isinstance(optimizer, torch.optim.LBFGS): optimizer.step(second_order_closure) else: optimizer.step() # clear gradients optimizer.zero_grad() def tbptt_split_batch(self, batch, split_size): r""" When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function. Args: batch (torch.nn.Tensor): Current batch split_size (int): How big the split is Return: list of batch splits. Each split will be passed to forward_step to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length. Example ------- .. code-block:: python def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits .. note:: Called in the training loop after on_batch_start if `truncated_bptt_steps > 0`. Each returned batch split is passed separately to training_step(...). """ time_dims = [len(x[0]) for x in batch if isinstance( x, torch.Tensor) or isinstance(x, collections.Sequence)] assert len(time_dims) >= 1, "Unable to determine batch time dimension" assert all(x == time_dims[0] for x in time_dims), "Batch time dimension length is ambiguous" splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits @data_loader @abstractmethod def train_dataloader(self): """Implement a PyTorch DataLoader :return: PyTorch DataLoader Called by lightning during training loop. Make sure to use the @pl.data_loader decorator, this ensures not calling this function until the data are needed. If you want to change the data during every epoch DON'T use the data_loader decorator. Example ------- .. code-block:: python @pl.data_loader def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader """ @data_loader def tng_dataloader(self): """Implement a PyTorch DataLoader. .. warning:: Deprecated in v0.5.0. use train_dataloader instead. """ output = self.train_dataloader() warnings.warn("`tng_dataloader` has been renamed to `train_dataloader` since v0.5.0" " and will be removed in v0.8.0", DeprecationWarning) return output @data_loader def test_dataloader(self): r""" Called by lightning during test loop. Make sure to use the @pl.data_loader decorator, this ensures not calling this function until the data are needed. Return: PyTorch DataLoader Example ------- .. code-block:: python @pl.data_loader def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader .. note:: If you don't need a test dataset and a test_step, you don't need to implement this method. .. note:: If you want to change the data during every epoch DON'T use the data_loader decorator. """ return None @data_loader def val_dataloader(self): r""" Called by lightning during validation loop. Make sure to use the @pl.data_loader decorator, this ensures not calling this function until the data are needed. Return: PyTorch DataLoader Example ------- .. code-block:: python @pl.data_loader def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader # can also return multiple dataloaders @pl.data_loader def val_dataloader(self): return [loader_a, loader_b, ..., loader_n] Example ------- .. code-block:: python @pl.data_loader def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader # can also return multiple dataloaders @pl.data_loader def val_dataloader(self): return [loader_a, loader_b, ..., loader_n] .. note:: If you don't need a validation dataset and a validation_step, you don't need to implement this method. .. note:: If you want to change the data during every epoch DON'T use the data_loader decorator. .. note:: In the case where you return multiple `val_dataloaders`, the `validation_step` will have an argument `dataset_idx` which matches the order here. """ return None @classmethod def load_from_metrics(cls, weights_path, tags_csv, map_location=None): r""" You should use `load_from_checkpoint` instead! However, if your .ckpt weights don't have the hyperparameters saved, use this method to pass in a .csv with the hparams you'd like to use. These will be converted into a argparse.Namespace and passed into your LightningModule for use. Args: weights_path (str): Path to a PyTorch checkpoint tags_csv (str): Path to a .csv with two columns (key, value) as in this Example:: key,value drop_prob,0.2 batch_size,32 map_location (dict): A dictionary mapping saved weight GPU devices to new GPU devices (example: {'cuda:1':'cuda:0'}) Return: LightningModule with loaded weights Example ------- .. code-block:: python pretrained_model = MyLightningModule.load_from_metrics( weights_path='/path/to/pytorch_checkpoint.ckpt', tags_csv='/path/to/hparams_file.csv', on_gpu=True, map_location=None ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x) """ hparams = load_hparams_from_tags_csv(tags_csv) hparams.__setattr__('on_gpu', False) if map_location is not None: checkpoint = torch.load(weights_path, map_location=map_location) else: checkpoint = torch.load(weights_path, map_location=lambda storage, loc: storage) # load the state_dict on the model automatically model = cls(hparams) model.load_state_dict(checkpoint['state_dict']) # give model a chance to load something model.on_load_checkpoint(checkpoint) return model @classmethod def load_from_checkpoint(cls, checkpoint_path, map_location=None): r""" Primary way of loading model from a checkpoint. When Lightning saves a checkpoint it stores the hyperparameters in the checkpoint if you initialized your LightningModule with an argument called `hparams` which is a Namespace or dictionary of hyperparameters Example ------- .. code-block:: python # -------------- # Case 1 # when using Namespace (output of using Argparse to parse command line arguments) from argparse import Namespace hparams = Namespace(**{'learning_rate': 0.1}) model = MyModel(hparams) class MyModel(pl.LightningModule): def __init__(self, hparams): self.learning_rate = hparams.learning_rate # -------------- # Case 2 # when using a dict model = MyModel({'learning_rate': 0.1}) class MyModel(pl.LightningModule): def __init__(self, hparams): self.learning_rate = hparams['learning_rate'] Args: checkpoint_path (str): Path to checkpoint. map_location (dic): If your checkpoint saved from a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. Return: LightningModule with loaded weights. Example ------- .. code-block:: python # load weights without mapping MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # load weights mapping all weights from GPU 1 to GPU 0 map_location = {'cuda:1':'cuda:0'} MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt', map_location=map_location) """ if map_location is not None: checkpoint = torch.load(checkpoint_path, map_location=map_location) else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) try: ckpt_hparams = checkpoint['hparams'] except KeyError: raise IOError( "Checkpoint does not contain hyperparameters. Are your model hyperparameters stored" "in self.hparams?" ) hparams = Namespace(**ckpt_hparams) # load the state_dict on the model automatically model = cls(hparams) model.load_state_dict(checkpoint['state_dict']) # give model a chance to load something model.on_load_checkpoint(checkpoint) return model def summarize(self, mode): model_summary = ModelSummary(self, mode=mode) log.info('\n' + model_summary.__str__()) def freeze(self): r""" Freeze all params for inference Example ------- .. code-block:: python model = MyLightningModule(...) model.freeze() """ for param in self.parameters(): param.requires_grad = False self.eval() def unfreeze(self): """Unfreeze all params for inference. .. code-block:: python model = MyLightningModule(...) model.unfreeze() """ for param in self.parameters(): param.requires_grad = True self.train() def on_load_checkpoint(self, checkpoint): r""" Called by lightning to restore your model. If you saved something with **on_save_checkpoint** this is your chance to restore this. Args: checkpoint (dict): Loaded checkpoint Example ------- .. code-block:: python def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save'] .. note:: Lighting auto-restores global step, epoch, and all training state including amp scaling. No need for you to restore anything regarding training. """ pass def on_save_checkpoint(self, checkpoint): r""" Called by lightning when saving a checkpoint to give you a chance to store anything else you might want to save Args: checkpoint (dic): Checkpoint to be saved Example ------- .. code-block:: python def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object .. note:: Lighting saves all aspects of training (epoch, global step, etc...) including amp scaling. No need for you to store anything about training. """ pass def load_hparams_from_tags_csv(tags_csv): if not os.path.isfile(tags_csv): log.warning(f'Missing Tags: {tags_csv}.') return Namespace() tags = {} with open(tags_csv) as f: csv_reader = csv.reader(f, delimiter=',') for row in list(csv_reader)[1:]: tags[row[0]] = convert(row[1]) ns = Namespace(**tags) return ns def convert(val): constructors = [int, float, str] if type(val) is str: if val.lower() == 'true': return True if val.lower() == 'false': return False for c in constructors: try: return c(val) except ValueError: pass return val