.. testsetup:: * from pytorch_lightning.trainer.trainer import Trainer 16-bit training ================= Lightning offers 16-bit training for CPUs, GPUs and TPUs. ---------- GPU 16-bit ---------- 16 bit precision can cut your memory footprint by half. If using volta architecture GPUs it can give a dramatic training speed-up as well. .. note:: PyTorch 1.6+ is recommended for 16-bit Native torch ^^^^^^^^^^^^ When using PyTorch 1.6+ Lightning uses the native amp implementation to support 16-bit. .. testcode:: # turn on 16-bit trainer = Trainer(precision=16) Apex 16-bit ^^^^^^^^^^^ If you are using an earlier version of PyTorch Lightning uses Apex to support 16-bit. Follow these instructions to install Apex. To use 16-bit precision, do two things: 1. Install Apex 2. Set the "precision" trainer flag. .. code-block:: bash $ git clone https://github.com/NVIDIA/apex $ cd apex # ------------------------ # OPTIONAL: on your cluster you might need to load cuda 10 or 9 # depending on how you installed PyTorch # see available modules module avail # load correct cuda before install module load cuda-10.0 # ------------------------ # make sure you've loaded a cuda version > 4.0 and < 7.0 module load gcc-6.1.0 $ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ .. warning:: NVIDIA Apex and DDP have instability problems. We recommend native 16-bit in PyTorch 1.6+ Enable 16-bit ^^^^^^^^^^^^^ .. testcode:: # turn on 16-bit trainer = Trainer(amp_level='O2', precision=16) If you need to configure the apex init for your particular use case or want to use a different way of doing 16-bit training, override :meth:`pytorch_lightning.core.LightningModule.configure_apex`. ---------- TPU 16-bit ---------- 16-bit on TPus is much simpler. To use 16-bit with TPUs set precision to 16 when using the tpu flag .. testcode:: # DEFAULT trainer = Trainer(tpu_cores=8, precision=32) # turn on 16-bit trainer = Trainer(tpu_cores=8, precision=16)