import os import sys from test_tube import HyperOptArgumentParser, Experiment from pytorch_lightning.models.trainer import Trainer from pytorch_lightning.utils.arg_parse import add_default_args from pytorch_lightning.callbacks.pt_callbacks import EarlyStopping, ModelCheckpoint from docs.source.examples.example_model import ExampleModel def main(hparams): """ Main training routine specific for this project :param hparams: :return: """ # init experiment exp = Experiment( name=hparams.tt_name, debug=hparams.debug, save_dir=hparams.tt_save_path, version=hparams.hpc_exp_number, autosave=False, description=hparams.tt_description ) exp.argparse(hparams) exp.save() # build model model = ExampleModel(hparams) # callbacks early_stop = EarlyStopping( monitor='val_acc', patience=3, mode='min', verbose=True, ) model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version) checkpoint = ModelCheckpoint( filepath=model_save_path, save_best_only=True, verbose=True, monitor='val_acc', mode='min' ) # configure trainer trainer = Trainer( experiment=exp, checkpoint_callback=checkpoint, early_stop_callback=early_stop, ) # train model trainer.fit(model) if __name__ == '__main__': # use default args given by lightning root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0] parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False) add_default_args(parent_parser, root_dir) # allow model to overwrite or extend args parser = ExampleModel.add_model_specific_args(parent_parser) hyperparams = parser.parse_args() # train model main(hyperparams)