# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import GPUStatsMonitor from pytorch_lightning.loggers import CSVLogger from pytorch_lightning.loggers.csv_logs import ExperimentWriter from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_gpu_stats_monitor(tmpdir): """ Test GPU stats are logged using a logger. """ model = EvalModelTemplate() gpu_stats = GPUStatsMonitor(intra_step_time=True) logger = CSVLogger(tmpdir) log_every_n_steps = 2 trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=7, log_every_n_steps=log_every_n_steps, gpus=1, callbacks=[gpu_stats], logger=logger ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" path_csv = os.path.join(logger.log_dir, ExperimentWriter.NAME_METRICS_FILE) met_data = np.genfromtxt(path_csv, delimiter=',', names=True, deletechars='', replace_space=' ') batch_time_data = met_data['batch_time/intra_step (ms)'] batch_time_data = batch_time_data[~np.isnan(batch_time_data)] assert batch_time_data.shape[0] == trainer.global_step // log_every_n_steps fields = [ 'utilization.gpu', 'memory.used', 'memory.free', 'utilization.memory' ] for f in fields: assert any([f in h for h in met_data.dtype.names]) @pytest.mark.skipif(torch.cuda.is_available(), reason="test requires CPU machine") def test_gpu_stats_monitor_cpu_machine(tmpdir): """ Test GPUStatsMonitor on CPU machine. """ with pytest.raises(MisconfigurationException, match='NVIDIA driver is not installed'): GPUStatsMonitor() @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_gpu_stats_monitor_no_logger(tmpdir): """ Test GPUStatsMonitor with no logger in Trainer. """ model = EvalModelTemplate() gpu_stats = GPUStatsMonitor() trainer = Trainer( default_root_dir=tmpdir, callbacks=[gpu_stats], max_epochs=1, gpus=1, logger=False ) with pytest.raises(MisconfigurationException, match='Trainer that has no logger.'): trainer.fit(model) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_gpu_stats_monitor_no_gpu_warning(tmpdir): """ Test GPUStatsMonitor raises a warning when not training on GPU device. """ model = EvalModelTemplate() gpu_stats = GPUStatsMonitor() trainer = Trainer( default_root_dir=tmpdir, callbacks=[gpu_stats], max_steps=1, gpus=None ) with pytest.raises(MisconfigurationException, match='not running on GPU'): trainer.fit(model) def test_gpu_stats_monitor_parse_gpu_stats(): logs = GPUStatsMonitor._parse_gpu_stats('1,2', [[3, 4, 5], [6, 7]], [('gpu', 'a'), ('memory', 'b')]) expected = {'gpu_id: 1/gpu (a)': 3, 'gpu_id: 1/memory (b)': 4, 'gpu_id: 2/gpu (a)': 6, 'gpu_id: 2/memory (b)': 7} assert logs == expected