# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle from unittest import mock import cloudpickle import pytest import torch from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from tests.base import EvalModelTemplate from pytorch_lightning.utilities.exceptions import MisconfigurationException class EarlyStoppingTestRestore(EarlyStopping): # this class has to be defined outside the test function, otherwise we get pickle error def __init__(self, expected_state=None): super().__init__() self.expected_state = expected_state # cache the state for each epoch self.saved_states = [] def on_train_start(self, trainer, pl_module): if self.expected_state: assert self.on_save_checkpoint(trainer, pl_module) == self.expected_state def on_validation_end(self, trainer, pl_module): super().on_validation_end(trainer, pl_module) self.saved_states.append(self.on_save_checkpoint(trainer, pl_module).copy()) def test_resume_early_stopping_from_checkpoint(tmpdir): """ Prevent regressions to bugs: https://github.com/PyTorchLightning/pytorch-lightning/issues/1464 https://github.com/PyTorchLightning/pytorch-lightning/issues/1463 """ seed_everything(42) model = EvalModelTemplate() checkpoint_callback = ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on", save_top_k=1) early_stop_callback = EarlyStoppingTestRestore() trainer = Trainer( default_root_dir=tmpdir, checkpoint_callback=checkpoint_callback, callbacks=[early_stop_callback], num_sanity_val_steps=0, max_epochs=4, ) trainer.fit(model) checkpoint_filepath = checkpoint_callback.kth_best_model_path # ensure state is persisted properly checkpoint = torch.load(checkpoint_filepath) # the checkpoint saves "epoch + 1" early_stop_callback_state = early_stop_callback.saved_states[checkpoint["epoch"] - 1] assert 4 == len(early_stop_callback.saved_states) assert checkpoint["callbacks"][type(early_stop_callback)] == early_stop_callback_state # ensure state is reloaded properly (assertion in the callback) early_stop_callback = EarlyStoppingTestRestore(early_stop_callback_state) new_trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, resume_from_checkpoint=checkpoint_filepath, callbacks=[early_stop_callback], ) with pytest.raises(MisconfigurationException, match=r'.*you restored a checkpoint with current_epoch*'): new_trainer.fit(model) @mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"}) def test_early_stopping_no_extraneous_invocations(tmpdir): """Test to ensure that callback methods aren't being invoked outside of the callback handler.""" model = EvalModelTemplate() expected_count = 4 trainer = Trainer( default_root_dir=tmpdir, callbacks=[EarlyStopping()], val_check_interval=1.0, max_epochs=expected_count, ) trainer.fit(model) assert len(trainer.dev_debugger.early_stopping_history) == expected_count @pytest.mark.parametrize( "loss_values, patience, expected_stop_epoch", [([6, 5, 5, 5, 5, 5], 3, 4), ([6, 5, 4, 4, 3, 3], 1, 3), ([6, 5, 6, 5, 5, 5], 3, 4),], ) def test_early_stopping_patience(tmpdir, loss_values, patience, expected_stop_epoch): """Test to ensure that early stopping is not triggered before patience is exhausted.""" class ModelOverrideValidationReturn(EvalModelTemplate): validation_return_values = torch.Tensor(loss_values) count = 0 def validation_epoch_end(self, outputs): loss = self.validation_return_values[self.count] self.count += 1 return {"test_val_loss": loss} model = ModelOverrideValidationReturn() early_stop_callback = EarlyStopping(monitor="test_val_loss", patience=patience, verbose=True) trainer = Trainer( default_root_dir=tmpdir, callbacks=[early_stop_callback], val_check_interval=1.0, num_sanity_val_steps=0, max_epochs=10, ) trainer.fit(model) assert trainer.current_epoch == expected_stop_epoch def test_pickling(tmpdir): early_stopping = EarlyStopping() early_stopping_pickled = pickle.dumps(early_stopping) early_stopping_loaded = pickle.loads(early_stopping_pickled) assert vars(early_stopping) == vars(early_stopping_loaded) early_stopping_pickled = cloudpickle.dumps(early_stopping) early_stopping_loaded = cloudpickle.loads(early_stopping_pickled) assert vars(early_stopping) == vars(early_stopping_loaded) def test_early_stopping_no_val_step(tmpdir): """Test that early stopping callback falls back to training metrics when no validation defined.""" class CurrentModel(EvalModelTemplate): def training_step(self, *args, **kwargs): output = super().training_step(*args, **kwargs) output.update({'my_train_metric': output['loss']}) # could be anything else return output model = CurrentModel() model.validation_step = None model.val_dataloader = None stopping = EarlyStopping(monitor='my_train_metric', min_delta=0.1, patience=0) trainer = Trainer( default_root_dir=tmpdir, callbacks=[stopping], overfit_batches=0.20, max_epochs=10, ) result = trainer.fit(model) assert result == 1, 'training failed to complete' assert trainer.current_epoch < trainer.max_epochs - 1 def test_early_stopping_functionality(tmpdir): class CurrentModel(EvalModelTemplate): def validation_epoch_end(self, outputs): losses = [8, 4, 2, 3, 4, 5, 8, 10] val_loss = losses[self.current_epoch] self.log('abc', torch.tensor(val_loss)) model = CurrentModel() trainer = Trainer( default_root_dir=tmpdir, callbacks=[EarlyStopping(monitor='abc')], overfit_batches=0.20, max_epochs=20, ) trainer.fit(model) assert trainer.current_epoch == 5, 'early_stopping failed' def test_early_stopping_functionality_arbitrary_key(tmpdir): """Tests whether early stopping works with a custom key and dictionary results on val step.""" class CurrentModel(EvalModelTemplate): def validation_epoch_end(self, outputs): losses = [8, 4, 2, 3, 4, 5, 8, 10] val_loss = losses[self.current_epoch] return {'jiraffe': torch.tensor(val_loss)} model = CurrentModel() trainer = Trainer( default_root_dir=tmpdir, callbacks=[EarlyStopping(monitor='jiraffe')], overfit_batches=0.20, max_epochs=20, ) trainer.fit(model) assert trainer.current_epoch >= 5, 'early_stopping failed'