# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Sequence, Tuple import torch from pytorch_lightning.metrics.functional.reduction import reduce from pytorch_lightning.metrics.utils import _check_same_shape from torch.nn import functional as F def _gaussian_kernel(channel, kernel_size, sigma, device): def _gaussian(kernel_size, sigma, device): gauss = torch.arange( start=(1 - kernel_size) / 2, end=(1 + kernel_size) / 2, step=1, dtype=torch.float32, device=device ) gauss = torch.exp(-gauss.pow(2) / (2 * pow(sigma, 2))) return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size) gaussian_kernel_x = _gaussian(kernel_size[0], sigma[0], device) gaussian_kernel_y = _gaussian(kernel_size[1], sigma[1], device) kernel = torch.matmul(gaussian_kernel_x.t(), gaussian_kernel_y) return kernel.expand(channel, 1, kernel_size[0], kernel_size[1]) def _ssim_update( preds: torch.Tensor, target: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: if preds.dtype != target.dtype: raise TypeError( "Expected `preds` and `target` to have the same data type." f" Got pred: {preds.dtype} and target: {target.dtype}." ) _check_same_shape(preds, target) if len(preds.shape) != 4: raise ValueError( "Expected `preds` and `target` to have BxCxHxW shape." f" Got pred: {preds.shape} and target: {target.shape}." ) return preds, target def _ssim_compute( preds: torch.Tensor, target: torch.Tensor, kernel_size: Sequence[int] = (11, 11), sigma: Sequence[float] = (1.5, 1.5), reduction: str = "elementwise_mean", data_range: Optional[float] = None, k1: float = 0.01, k2: float = 0.03, ): if len(kernel_size) != 2 or len(sigma) != 2: raise ValueError( "Expected `kernel_size` and `sigma` to have the length of two." f" Got kernel_size: {len(kernel_size)} and sigma: {len(sigma)}." ) if any(x % 2 == 0 or x <= 0 for x in kernel_size): raise ValueError(f"Expected `kernel_size` to have odd positive number. Got {kernel_size}.") if any(y <= 0 for y in sigma): raise ValueError(f"Expected `sigma` to have positive number. Got {sigma}.") if data_range is None: data_range = max(preds.max() - preds.min(), target.max() - target.min()) c1 = pow(k1 * data_range, 2) c2 = pow(k2 * data_range, 2) device = preds.device channel = preds.size(1) kernel = _gaussian_kernel(channel, kernel_size, sigma, device) input_list = torch.cat([preds, target, preds * preds, target * target, preds * target]) # (5 * B, C, H, W) outputs = F.conv2d(input_list, kernel, groups=channel) output_list = [outputs[x * preds.size(0): (x + 1) * preds.size(0)] for x in range(len(outputs))] mu_pred_sq = output_list[0].pow(2) mu_target_sq = output_list[1].pow(2) mu_pred_target = output_list[0] * output_list[1] sigma_pred_sq = output_list[2] - mu_pred_sq sigma_target_sq = output_list[3] - mu_target_sq sigma_pred_target = output_list[4] - mu_pred_target upper = 2 * sigma_pred_target + c2 lower = sigma_pred_sq + sigma_target_sq + c2 ssim_idx = ((2 * mu_pred_target + c1) * upper) / ((mu_pred_sq + mu_target_sq + c1) * lower) return reduce(ssim_idx, reduction) def ssim( preds: torch.Tensor, target: torch.Tensor, kernel_size: Sequence[int] = (11, 11), sigma: Sequence[float] = (1.5, 1.5), reduction: str = "elementwise_mean", data_range: Optional[float] = None, k1: float = 0.01, k2: float = 0.03, ) -> torch.Tensor: """ Computes Structual Similarity Index Measure Args: pred: estimated image target: ground truth image kernel_size: size of the gaussian kernel (default: (11, 11)) sigma: Standard deviation of the gaussian kernel (default: (1.5, 1.5)) reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied data_range: Range of the image. If ``None``, it is determined from the image (max - min) k1: Parameter of SSIM. Default: 0.01 k2: Parameter of SSIM. Default: 0.03 Return: Tensor with SSIM score Example: >>> preds = torch.rand([16, 1, 16, 16]) >>> target = preds * 0.75 >>> ssim(preds, target) tensor(0.9219) """ preds, target = _ssim_update(preds, target) return _ssim_compute(preds, target, kernel_size, sigma, reduction, data_range, k1, k2)