# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock import numpy as np import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import GPUStatsMonitor from pytorch_lightning.loggers import CSVLogger from pytorch_lightning.loggers.csv_logs import ExperimentWriter from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers import BoringModel from tests.helpers.runif import RunIf @RunIf(min_gpus=1) def test_gpu_stats_monitor(tmpdir): """ Test GPU stats are logged using a logger. """ model = BoringModel() gpu_stats = GPUStatsMonitor(intra_step_time=True) logger = CSVLogger(tmpdir) log_every_n_steps = 2 trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=7, log_every_n_steps=log_every_n_steps, gpus=1, callbacks=[gpu_stats], logger=logger, ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" path_csv = os.path.join(logger.log_dir, ExperimentWriter.NAME_METRICS_FILE) met_data = np.genfromtxt(path_csv, delimiter=",", names=True, deletechars="", replace_space=" ") batch_time_data = met_data["batch_time/intra_step (ms)"] batch_time_data = batch_time_data[~np.isnan(batch_time_data)] assert batch_time_data.shape[0] == trainer.global_step // log_every_n_steps fields = ["utilization.gpu", "memory.used", "memory.free", "utilization.memory"] for f in fields: assert any(f in h for h in met_data.dtype.names) @RunIf(min_gpus=1) def test_gpu_stats_monitor_no_queries(tmpdir): """ Test GPU logger doesn't fail if no "nvidia-smi" queries are to be performed. """ model = BoringModel() gpu_stats = GPUStatsMonitor( memory_utilization=False, gpu_utilization=False, intra_step_time=True, inter_step_time=True, ) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=0, log_every_n_steps=1, gpus=1, callbacks=[gpu_stats], ) with mock.patch("pytorch_lightning.loggers.tensorboard.TensorBoardLogger.log_metrics") as log_metrics_mock: trainer.fit(model) assert log_metrics_mock.mock_calls[2:] == [ mock.call({"batch_time/intra_step (ms)": mock.ANY}, step=0), mock.call({"batch_time/inter_step (ms)": mock.ANY}, step=1), mock.call({"batch_time/intra_step (ms)": mock.ANY}, step=1), ] @pytest.mark.skipif(torch.cuda.is_available(), reason="test requires CPU machine") def test_gpu_stats_monitor_cpu_machine(tmpdir): """ Test GPUStatsMonitor on CPU machine. """ with pytest.raises(MisconfigurationException, match="NVIDIA driver is not installed"): GPUStatsMonitor() @RunIf(min_gpus=1) def test_gpu_stats_monitor_no_logger(tmpdir): """ Test GPUStatsMonitor with no logger in Trainer. """ model = BoringModel() gpu_stats = GPUStatsMonitor() trainer = Trainer(default_root_dir=tmpdir, callbacks=[gpu_stats], max_epochs=1, gpus=1, logger=False) with pytest.raises(MisconfigurationException, match="Trainer that has no logger."): trainer.fit(model) @RunIf(min_gpus=1) def test_gpu_stats_monitor_no_gpu_warning(tmpdir): """ Test GPUStatsMonitor raises a warning when not training on GPU device. """ model = BoringModel() gpu_stats = GPUStatsMonitor() trainer = Trainer(default_root_dir=tmpdir, callbacks=[gpu_stats], max_steps=1, gpus=None) with pytest.raises(MisconfigurationException, match="not running on GPU"): trainer.fit(model) def test_gpu_stats_monitor_parse_gpu_stats(): logs = GPUStatsMonitor._parse_gpu_stats([1, 2], [[3, 4, 5], [6, 7]], [("gpu", "a"), ("memory", "b")]) expected = { "device_id: 1/gpu (a)": 3, "device_id: 1/memory (b)": 4, "device_id: 2/gpu (a)": 6, "device_id: 2/memory (b)": 7, } assert logs == expected @mock.patch.dict(os.environ, {}) @mock.patch("torch.cuda.is_available", return_value=True) @mock.patch("torch.cuda.device_count", return_value=2) def test_gpu_stats_monitor_get_gpu_ids_cuda_visible_devices_unset(device_count_mock, is_available_mock): gpu_ids = GPUStatsMonitor._get_gpu_ids([1, 0]) expected = ["1", "0"] assert gpu_ids == expected @mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "3,2,4"}) @mock.patch("torch.cuda.is_available", return_value=True) @mock.patch("torch.cuda.device_count", return_value=3) def test_gpu_stats_monitor_get_gpu_ids_cuda_visible_devices_integers(device_count_mock, is_available_mock): gpu_ids = GPUStatsMonitor._get_gpu_ids([1, 2]) expected = ["2", "4"] assert gpu_ids == expected @mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "GPU-01a23b4c,GPU-56d78e9f,GPU-02a46c8e"}) @mock.patch("torch.cuda.is_available", return_value=True) @mock.patch("torch.cuda.device_count", return_value=3) def test_gpu_stats_monitor_get_gpu_ids_cuda_visible_devices_uuids(device_count_mock, is_available_mock): gpu_ids = GPUStatsMonitor._get_gpu_ids([1, 2]) expected = ["GPU-56d78e9f", "GPU-02a46c8e"] assert gpu_ids == expected