from argparse import Namespace from typing import Optional, Dict, Any, Union try: from test_tube import Experiment except ImportError: # pragma: no-cover raise ImportError('You want to use `test_tube` logger which is not installed yet,' # pragma: no-cover ' install it with `pip install test-tube`.') from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_only class TestTubeLogger(LightningLoggerBase): r""" Log to local file system in TensorBoard format but using a nicer folder structure. (see `full docs `_). """ __test__ = False def __init__( self, save_dir: str, name: str = "default", description: Optional[str] = None, debug: bool = False, version: Optional[int] = None, create_git_tag: bool = False ): r""" .. _testTube: Example ---------- .. code-block:: python logger = TestTubeLogger("tt_logs", name="my_exp_name") trainer = Trainer(logger=logger) trainer.train(model) Use the logger anywhere in you LightningModule as follows: .. code-block:: python def train_step(...): # example self.logger.experiment.whatever_method_summary_writer_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.add_histogram(...) Args: save_dir (str): Save directory name (str): Experiment name. Defaults to "default". description (str): A short snippet about this experiment debug (bool): If True, it doesn't log anything version (int): Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. create_git_tag (bool): If True creates a git tag to save the code used in this experiment """ super().__init__() self.save_dir = save_dir self._name = name self.description = description self.debug = debug self._version = version self.create_git_tag = create_git_tag self._experiment = None @property def experiment(self) -> Experiment: r""" Actual test-tube object. To use test-tube features do the following. Example:: self.logger.experiment.some_test_tube_function() """ if self._experiment is not None: return self._experiment self._experiment = Experiment( save_dir=self.save_dir, name=self._name, debug=self.debug, version=self.version, description=self.description, create_git_tag=self.create_git_tag, rank=self.rank, ) return self._experiment @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug params = self._convert_params(params) params = self._flatten_dict(params) self.experiment.argparse(Namespace(**params)) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug self.experiment.log(metrics, global_step=step) @rank_zero_only def save(self) -> None: # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug self.experiment.save() @rank_zero_only def finalize(self, status: str) -> None: # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug self.save() self.close() @rank_zero_only def close(self) -> None: # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug if not self.debug: exp = self.experiment exp.close() @property def rank(self) -> int: return self._rank @rank.setter def rank(self, value: int) -> None: self._rank = value if self._experiment is not None: self.experiment.rank = value @property def name(self) -> str: if self._experiment is None: return self._name else: return self.experiment.name @property def version(self) -> int: if self._experiment is None: return self._version else: return self.experiment.version # Test tube experiments are not pickleable, so we need to override a few # methods to get DDP working. See # https://docs.python.org/3/library/pickle.html#handling-stateful-objects # for more info. def __getstate__(self) -> Dict[Any, Any]: state = self.__dict__.copy() state["_experiment"] = self.experiment.get_meta_copy() return state def __setstate__(self, state: Dict[Any, Any]): self._experiment = state["_experiment"].get_non_ddp_exp() del state["_experiment"] self.__dict__.update(state)