.. testsetup:: * from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.core.datamodule import LightningDataModule from pytorch_lightning.trainer.trainer import Trainer .. _converting: ###################################### How to organize PyTorch into Lightning ###################################### To enable your code to work with Lightning, here's how to organize PyTorch into Lightning: -------- ******************************* 1. Move your Computational Code ******************************* Move the model architecture and forward pass to your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class LitModel(LightningModule): def __init__(self): super().__init__() self.layer_1 = nn.Linear(28 * 28, 128) self.layer_2 = nn.Linear(128, 10) def forward(self, x): x = x.view(x.size(0), -1) x = self.layer_1(x) x = F.relu(x) x = self.layer_2(x) return x -------- ******************************************** 2. Move the Optimizer(s) and LR Scheduler(s) ******************************************** Move your optimizers to the :meth:`~pytorch_lightning.core.lightning.LightningModule.configure_optimizers` hook. .. testcode:: class LitModel(LightningModule): def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] -------- ******************************* 3. Configure the Training Logic ******************************* Lightning automates the training loop for you and manages all of the associated components such as: epoch and batch tracking, optimizers and schedulers, and metric reduction. As a user, you just need to define how your model behaves with a batch of training data within the :meth:`~pytorch_lightning.core.lightning.LightningModule.training_step` method. When using Lightning, simply override the :meth:`~pytorch_lightning.core.lightning.LightningModule.training_step` method which takes the current ``batch`` and the ``batch_idx`` as arguments. Optionally, it can take ``optimizer_idx`` if your LightningModule defines multiple optimizers within its :meth:`~pytorch_lightning.core.lightning.LightningModule.configure_optimizers` hook. .. testcode:: class LitModel(LightningModule): def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss -------- ********************************* 4. Configure the Validation Logic ********************************* Lightning also automates the validation loop for you and manages all of the associated components such as: epoch and batch tracking, and metrics reduction. As a user, you just need to define how your model behaves with a batch of validation data within the :meth:`~pytorch_lightning.core.lightning.LightningModule.validation_step` method. When using Lightning, simply override the :meth:`~pytorch_lightning.core.lightning.LightningModule.validation_step` method which takes the current ``batch`` and the ``batch_idx`` as arguments. Optionally, it can take ``dataloader_idx`` if you configure multiple dataloaders. To add an (optional) validation loop add logic to the :meth:`~pytorch_lightning.core.lightning.LightningModule.validation_step` hook (make sure to use the hook parameters, ``batch`` and ``batch_idx`` in this case). .. testcode:: class LitModel(LightningModule): def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) val_loss = F.cross_entropy(y_hat, y) self.log("val_loss", val_loss) Additionally, you can run only the validation loop using :meth:`~pytorch_lightning.trainer.trainer.Trainer.validate` method. .. code-block:: python model = LitModel() trainer.validate(model) .. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for validation. .. tip:: ``trainer.validate()`` loads the best checkpoint automatically by default if checkpointing was enabled during fitting. -------- ************************** 5. Configure Testing Logic ************************** Lightning automates the testing loop for you and manages all the associated components, such as epoch and batch tracking, metrics reduction. As a user, you just need to define how your model behaves with a batch of testing data within the :meth:`~pytorch_lightning.core.lightning.LightningModule.test_step` method. When using Lightning, simply override the :meth:`~pytorch_lightning.core.lightning.LightningModule.test_step` method which takes the current ``batch`` and the ``batch_idx`` as arguments. Optionally, it can take ``dataloader_idx`` if you configure multiple dataloaders. .. testcode:: class LitModel(LightningModule): def test_step(self, batch, batch_idx): x, y = batch y_hat = self(x) test_loss = F.cross_entropy(y_hat, y) self.log("test_loss", test_loss) The test loop isn't used within :meth:`~pytorch_lightning.trainer.trainer.Trainer.fit`, therefore, you would need to explicitly call :meth:`~pytorch_lightning.trainer.trainer.Trainer.test`. .. code-block:: python model = LitModel() trainer.test(model) .. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for testing. .. tip:: ``trainer.test()`` loads the best checkpoint automatically by default if checkpointing is enabled. -------- ***************************** 6. Configure Prediction Logic ***************************** Lightning automates the prediction loop for you and manages all of the associated components such as epoch and batch tracking. As a user, you just need to define how your model behaves with a batch of data within the :meth:`~pytorch_lightning.core.lightning.LightningModule.predict_step` method. When using Lightning, simply override the :meth:`~pytorch_lightning.core.lightning.LightningModule.predict_step` method which takes the current ``batch`` and the ``batch_idx`` as arguments. Optionally, it can take ``dataloader_idx`` if you configure multiple dataloaders. If you don't override ``predict_step`` hook, it by default calls :meth:`~pytorch_lightning.core.lightning.LightningModule.forward` method on the batch. .. testcode:: class LitModel(LightningModule): def predict_step(self, batch, batch_idx): x, y = batch pred = self(x) return pred The predict loop will not be used until you call :meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`. .. code-block:: python model = LitModel() trainer.predict(model) .. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for testing. .. tip:: ``trainer.predict()`` loads the best checkpoint automatically by default if checkpointing is enabled. -------- ****************************************** 7. Remove any .cuda() or .to(device) Calls ****************************************** Your :doc:`LightningModule <../common/lightning_module>` can automatically run on any hardware! If you have any explicit calls to ``.cuda()`` or ``.to(device)``, you can remove them since Lightning makes sure that the data coming from :class:`~torch.utils.data.DataLoader` and all the :class:`~torch.nn.Module` instances initialized inside ``LightningModule.__init__`` are moved to the respective devices automatically. .. testcode:: class LitModel(LightningModule): def __init__(self): super().__init__() self.register_buffer("running_mean", torch.zeros(num_features)) If you still need to access the current device, you can use ``self.device`` anywhere in ``LightningModule`` except ``__init__`` method. You are initializing a :class:`~torch.Tensor` within ``LightningModule.__init__`` method and want it to be moved to the device automatically you must :meth:`~torch.nn.Module.register_buffer` to register it as a parameter. .. testcode:: class LitModel(LightningModule): def training_step(self, batch, batch_idx): z = torch.randn(4, 5, device=self.device) ... -------- ******************** 8. Use your own data ******************** To use your DataLoaders, you can override the respective dataloader hooks in the :class:`~pytorch_lightning.core.lightning.LightningModule`: .. testcode:: class LitModel(LightningModule): def train_dataloader(self): return DataLoader(...) def val_dataloader(self): return DataLoader(...) def test_dataloader(self): return DataLoader(...) def predict_dataloader(self): return DataLoader(...) Alternatively, you can pass your dataloaders in one of the following ways: * Pass in the dataloaders explictly inside ``trainer.fit/.validate/.test/.predict`` calls. * Use a :ref:`LightningDataModule `. Checkout :ref:`data` doc to understand data management within Lightning.