# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import numbers from collections import namedtuple, OrderedDict from typing import List import numpy as np import pytest import torch from pytorch_lightning.utilities.apply_func import apply_to_collection, apply_to_collections def test_recursive_application_to_collection(): ntc = namedtuple('Foo', ['bar']) @dataclasses.dataclass class Feature: input_ids: torch.Tensor segment_ids: np.ndarray @dataclasses.dataclass class ModelExample: example_ids: List[str] feature: Feature label: torch.Tensor to_reduce = { 'a': torch.tensor([1.]), # Tensor 'b': [torch.tensor([2.])], # list 'c': (torch.tensor([100.]), ), # tuple 'd': ntc(bar=5.), # named tuple 'e': np.array([10.]), # numpy array 'f': 'this_is_a_dummy_str', # string 'g': 12., # number 'h': Feature(input_ids=torch.tensor([1., 2., 3.]), segment_ids=np.array([4., 5., 6.])), # dataclass 'i': ModelExample( example_ids=['i-1', 'i-2', 'i-3'], feature=Feature(input_ids=torch.tensor([1., 2., 3.]), segment_ids=np.array([4., 5., 6.])), label=torch.tensor([7., 8., 9.]) ) # nested dataclass } expected_result = { 'a': torch.tensor([2.]), 'b': [torch.tensor([4.])], 'c': (torch.tensor([200.]), ), 'd': ntc(bar=torch.tensor([10.])), 'e': np.array([20.]), 'f': 'this_is_a_dummy_str', 'g': 24., 'h': Feature(input_ids=torch.tensor([2., 4., 6.]), segment_ids=np.array([8., 10., 12.])), 'i': ModelExample( example_ids=['i-1', 'i-2', 'i-3'], feature=Feature(input_ids=torch.tensor([2., 4., 6.]), segment_ids=np.array([8., 10., 12.])), label=torch.tensor([14., 16., 18.]) ) } reduced = apply_to_collection(to_reduce, (torch.Tensor, numbers.Number, np.ndarray), lambda x: x * 2) assert isinstance(reduced, dict), ' Type Consistency of dict not preserved' assert all([x in reduced for x in to_reduce]), 'Not all entries of the dict were preserved' assert all([isinstance(reduced[k], type(expected_result[k])) for k in to_reduce]), \ 'At least one type was not correctly preserved' assert isinstance(reduced['a'], torch.Tensor), 'Reduction Result of a Tensor should be a Tensor' assert torch.allclose(expected_result['a'], reduced['a']), \ 'Reduction of a tensor does not yield the expected value' assert isinstance(reduced['b'], list), 'Reduction Result of a list should be a list' assert all([torch.allclose(x, y) for x, y in zip(reduced['b'], expected_result['b'])]), \ 'At least one value of list reduction did not come out as expected' assert isinstance(reduced['c'], tuple), 'Reduction Result of a tuple should be a tuple' assert all([torch.allclose(x, y) for x, y in zip(reduced['c'], expected_result['c'])]), \ 'At least one value of tuple reduction did not come out as expected' assert isinstance(reduced['d'], ntc), 'Type Consistency for named tuple not given' assert isinstance(reduced['d'].bar, numbers.Number), \ 'Failure in type promotion while reducing fields of named tuples' assert reduced['d'].bar == expected_result['d'].bar assert isinstance(reduced['e'], np.ndarray), 'Type Promotion in reduction of numpy arrays failed' assert reduced['e'] == expected_result['e'], \ 'Reduction of numpy array did not yield the expected result' assert isinstance(reduced['f'], str), 'A string should not be reduced' assert reduced['f'] == expected_result['f'], 'String not preserved during reduction' assert isinstance(reduced['g'], numbers.Number), 'Reduction of a number should result in a number' assert reduced['g'] == expected_result['g'], 'Reduction of a number did not yield the desired result' assert dataclasses.is_dataclass(reduced['h']) and not isinstance(reduced['h'], type), \ 'Reduction of a dataclass should result in a dataclass' assert torch.allclose(reduced['h'].input_ids, expected_result['h'].input_ids), \ 'Reduction of a dataclass did not yield the desired result' assert np.allclose(reduced['h'].segment_ids, expected_result['h'].segment_ids), \ 'Reduction of a dataclass did not yield the desired result' assert dataclasses.is_dataclass(reduced['i']) and not isinstance(reduced['i'], type), \ 'Reduction of a dataclass should result in a dataclass' assert dataclasses.is_dataclass(reduced['i'].feature) and not isinstance(reduced['i'].feature, type), \ 'Reduction of a nested dataclass should result in a nested dataclass' assert reduced['i'].example_ids == expected_result['i'].example_ids, \ 'Reduction of a nested dataclass did not yield the desired result' assert torch.allclose(reduced['i'].label, expected_result['i'].label), \ 'Reduction of a nested dataclass did not yield the desired result' assert torch.allclose(reduced['i'].feature.input_ids, expected_result['i'].feature.input_ids), \ 'Reduction of a nested dataclass did not yield the desired result' assert np.allclose(reduced['i'].feature.segment_ids, expected_result['i'].feature.segment_ids), \ 'Reduction of a nested dataclass did not yield the desired result' # mapping support reduced = apply_to_collection({'a': 1, 'b': 2}, int, lambda x: str(x)) assert reduced == {'a': '1', 'b': '2'} reduced = apply_to_collection(OrderedDict([('b', 2), ('a', 1)]), int, lambda x: str(x)) assert reduced == OrderedDict([('b', '2'), ('a', '1')]) # custom mappings class _CustomCollection(dict): def __init__(self, initial_dict): super().__init__(initial_dict) to_reduce = _CustomCollection({'a': 1, 'b': 2, 'c': 3}) reduced = apply_to_collection(to_reduce, int, lambda x: str(x)) assert reduced == _CustomCollection({'a': '1', 'b': '2', 'c': '3'}) def test_apply_to_collection_include_none(): to_reduce = [1, 2, 3.4, 5.6, 7] def fn(x): if isinstance(x, float): return x reduced = apply_to_collection(to_reduce, (int, float), fn) assert reduced == [None, None, 3.4, 5.6, None] reduced = apply_to_collection(to_reduce, (int, float), fn, include_none=False) assert reduced == [3.4, 5.6] def test_apply_to_collections(): to_reduce_1 = {'a': {'b': [1, 2]}, 'c': 5} to_reduce_2 = {'a': {'b': [3, 4]}, 'c': 6} def fn(a, b): return a + b # basic test reduced = apply_to_collections(to_reduce_1, to_reduce_2, int, fn) assert reduced == {'a': {'b': [4, 6]}, 'c': 11} with pytest.raises(KeyError): # strict mode - if a key does not exist in both we fail apply_to_collections({**to_reduce_2, 'd': 'foo'}, to_reduce_1, float, fn) # multiple dtypes reduced = apply_to_collections(to_reduce_1, to_reduce_2, (list, int), fn) assert reduced == {'a': {'b': [1, 2, 3, 4]}, 'c': 11} # wrong dtype reduced = apply_to_collections(to_reduce_1, to_reduce_2, (list, int), fn, wrong_dtype=int) assert reduced == {'a': {'b': [1, 2, 3, 4]}, 'c': 5} # list takes precedence because it is the type of data1 reduced = apply_to_collections([1, 2, 3], [4], (int, list), fn) assert reduced == [1, 2, 3, 4] # different sizes with pytest.raises(AssertionError, match='Sequence collections have different sizes'): apply_to_collections([[1, 2], [3]], [4], int, fn) def fn(a, b): return a.keys() | b.keys() # base case reduced = apply_to_collections(to_reduce_1, to_reduce_2, dict, fn) assert reduced == {'a', 'c'} # type conversion to_reduce = [(1, 2), (3, 4)] reduced = apply_to_collections(to_reduce, to_reduce, int, lambda *x: sum(x)) assert reduced == [(2, 4), (6, 8)] # named tuple foo = namedtuple('Foo', ['bar']) to_reduce = [foo(1), foo(2), foo(3)] reduced = apply_to_collections(to_reduce, to_reduce, int, lambda *x: sum(x)) assert reduced == [foo(2), foo(4), foo(6)] # passing none reduced1 = apply_to_collections([1, 2, 3], None, int, lambda x: x * x) reduced2 = apply_to_collections(None, [1, 2, 3], int, lambda x: x * x) assert reduced1 == reduced2 == [1, 4, 9] reduced = apply_to_collections(None, None, int, lambda x: x * x) assert reduced is None