import pytest from pytorch_lightning import Trainer from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate import tests.base.develop_utils as tutils def test_lr_monitor_single_lr(tmpdir): """ Test that learning rates are extracted and logged for single lr scheduler. """ tutils.reset_seed() model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__single_scheduler lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) result = trainer.fit(model) assert result assert lr_monitor.lrs, 'No learning rates logged' assert len(lr_monitor.lrs) == len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of lr schedulers' assert all([k in ['lr-Adam'] for k in lr_monitor.lrs.keys()]), \ 'Names of learning rates not set correctly' def test_lr_monitor_no_lr_scheduler(tmpdir): tutils.reset_seed() model = EvalModelTemplate() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) with pytest.warns(RuntimeWarning, match='have no learning rate schedulers'): result = trainer.fit(model) assert result def test_lr_monitor_no_logger(tmpdir): tutils.reset_seed() model = EvalModelTemplate() lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, callbacks=[lr_monitor], logger=False ) with pytest.raises(MisconfigurationException, match='Trainer that has no logger'): trainer.fit(model) @pytest.mark.parametrize("logging_interval", ['step', 'epoch']) def test_lr_monitor_multi_lrs(tmpdir, logging_interval): """ Test that learning rates are extracted and logged for multi lr schedulers. """ tutils.reset_seed() model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__multiple_schedulers lr_monitor = LearningRateMonitor(logging_interval=logging_interval) trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) result = trainer.fit(model) assert result assert lr_monitor.lrs, 'No learning rates logged' assert len(lr_monitor.lrs) == len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of lr schedulers' assert all([k in ['lr-Adam', 'lr-Adam-1'] for k in lr_monitor.lrs.keys()]), \ 'Names of learning rates not set correctly' if logging_interval == 'step': expected_number_logged = trainer.global_step if logging_interval == 'epoch': expected_number_logged = trainer.max_epochs assert all(len(lr) == expected_number_logged for lr in lr_monitor.lrs.values()), \ 'Length of logged learning rates do not match the expected number' def test_lr_monitor_param_groups(tmpdir): """ Test that learning rates are extracted and logged for single lr scheduler. """ tutils.reset_seed() model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__param_groups lr_monitor = LearningRateMonitor() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor], ) result = trainer.fit(model) assert result assert lr_monitor.lrs, 'No learning rates logged' assert len(lr_monitor.lrs) == 2 * len(trainer.lr_schedulers), \ 'Number of learning rates logged does not match number of param groups' assert all([k in ['lr-Adam/pg1', 'lr-Adam/pg2'] for k in lr_monitor.lrs.keys()]), \ 'Names of learning rates not set correctly'