from pytorch_lightning import Trainer, Callback from tests.base.boring_model import BoringModel def test_train_step_no_return(tmpdir): """ Tests that only training_step can be used """ class CB(Callback): def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): d = outputs[0][0] assert 'minimize' in d def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): assert 'x' in outputs def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): assert 'x' in outputs def on_train_epoch_end(self, trainer, pl_module, outputs): d = outputs[0] assert len(d) == trainer.num_training_batches class TestModel(BoringModel): def on_train_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None: d = outputs[0][0] assert 'minimize' in d def on_validation_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None: assert 'x' in outputs def on_test_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None: assert 'x' in outputs def on_train_epoch_end(self, outputs) -> None: d = outputs[0] assert len(d) == self.trainer.num_training_batches model = TestModel() trainer = Trainer( callbacks=[CB()], default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=1, row_log_interval=1, weights_summary=None, ) trainer.fit(model)