# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import sys from pathlib import Path import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.utils.data import DataLoader import tests.helpers.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.core.step_result import Result from pytorch_lightning.trainer.states import TrainerState from tests import _SKIPIF_ARGS_NO_GPU from tests.helpers import BoringDataModule, BoringModel def _setup_ddp(rank, worldsize): import os os.environ["MASTER_ADDR"] = "localhost" # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=worldsize) def _ddp_test_fn(rank, worldsize, result_cls: Result): _setup_ddp(rank, worldsize) tensor = torch.tensor([1.0]) res = result_cls() res.log("test_tensor", tensor, sync_dist=True, sync_dist_op=torch.distributed.ReduceOp.SUM) assert res["test_tensor"].item() == dist.get_world_size(), "Result-Log does not work properly with DDP and Tensors" @pytest.mark.parametrize("result_cls", [Result]) @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") def test_result_reduce_ddp(result_cls): """Make sure result logging works with DDP""" tutils.reset_seed() tutils.set_random_master_port() worldsize = 2 mp.spawn(_ddp_test_fn, args=(worldsize, result_cls), nprocs=worldsize) @pytest.mark.parametrize( "test_option,do_train,gpus", [ pytest.param(0, True, 0, id='full_loop'), pytest.param(0, False, 0, id='test_only'), pytest.param( 1, False, 0, id='test_only_mismatching_tensor', marks=pytest.mark.xfail(raises=ValueError, match="Mism.*") ), pytest.param(2, False, 0, id='mix_of_tensor_dims'), pytest.param(3, False, 0, id='string_list_predictions'), pytest.param(4, False, 0, id='int_list_predictions'), pytest.param(5, False, 0, id='nested_list_predictions'), pytest.param(6, False, 0, id='dict_list_predictions'), pytest.param(7, True, 0, id='write_dict_predictions'), pytest.param(0, True, 1, id='full_loop_single_gpu', marks=pytest.mark.skipif(**_SKIPIF_ARGS_NO_GPU)) ] ) def test_result_obj_predictions(tmpdir, test_option, do_train, gpus): class CustomBoringModel(BoringModel): def test_step(self, batch, batch_idx, optimizer_idx=None): output = self(batch) test_loss = self.loss(batch, output) self.log('test_loss', test_loss) batch_size = batch.size(0) lst_of_str = [random.choice(['dog', 'cat']) for i in range(batch_size)] lst_of_int = [random.randint(500, 1000) for i in range(batch_size)] lst_of_lst = [[x] for x in lst_of_int] lst_of_dict = [{k: v} for k, v in zip(lst_of_str, lst_of_int)] # This is passed in from pytest via parameterization option = getattr(self, 'test_option', 0) prediction_file = getattr(self, 'prediction_file', 'predictions.pt') lazy_ids = torch.arange(batch_idx * batch_size, batch_idx * batch_size + batch_size) # Base if option == 0: self.write_prediction('idxs', lazy_ids, prediction_file) self.write_prediction('preds', output, prediction_file) # Check mismatching tensor len elif option == 1: self.write_prediction('idxs', torch.cat((lazy_ids, lazy_ids)), prediction_file) self.write_prediction('preds', output, prediction_file) # write multi-dimension elif option == 2: self.write_prediction('idxs', lazy_ids, prediction_file) self.write_prediction('preds', output, prediction_file) self.write_prediction('x', batch, prediction_file) # write str list elif option == 3: self.write_prediction('idxs', lazy_ids, prediction_file) self.write_prediction('vals', lst_of_str, prediction_file) # write int list elif option == 4: self.write_prediction('idxs', lazy_ids, prediction_file) self.write_prediction('vals', lst_of_int, prediction_file) # write nested list elif option == 5: self.write_prediction('idxs', lazy_ids, prediction_file) self.write_prediction('vals', lst_of_lst, prediction_file) # write dict list elif option == 6: self.write_prediction('idxs', lazy_ids, prediction_file) self.write_prediction('vals', lst_of_dict, prediction_file) elif option == 7: self.write_prediction_dict({'idxs': lazy_ids, 'preds': output}, prediction_file) class CustomBoringDataModule(BoringDataModule): def train_dataloader(self): return DataLoader(self.random_train, batch_size=4) def val_dataloader(self): return DataLoader(self.random_val, batch_size=4) def test_dataloader(self): return DataLoader(self.random_test, batch_size=4) tutils.reset_seed() prediction_file = Path(tmpdir) / 'predictions.pt' dm = BoringDataModule() model = CustomBoringModel() model.test_step_end = None model.test_epoch_end = None model.test_end = None model.test_option = test_option model.prediction_file = prediction_file.as_posix() if prediction_file.exists(): prediction_file.unlink() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, deterministic=True, gpus=gpus, ) # Prediction file shouldn't exist yet because we haven't done anything assert not prediction_file.exists() if do_train: result = trainer.fit(model, dm) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" assert result result = trainer.test(datamodule=dm) # TODO: add end-to-end test # assert result[0]['test_loss'] < 0.6 else: result = trainer.test(model, datamodule=dm) # check prediction file now exists and is of expected length assert prediction_file.exists() predictions = torch.load(prediction_file) assert len(predictions) == len(dm.random_test) def test_result_gather_stack(): """ Test that tensors get concatenated when they all have the same shape. """ outputs = [ { "foo": torch.zeros(4, 5) }, { "foo": torch.zeros(4, 5) }, { "foo": torch.zeros(4, 5) }, ] result = Result.gather(outputs) assert isinstance(result["foo"], torch.Tensor) assert list(result["foo"].shape) == [12, 5] def test_result_gather_concatenate(): """ Test that tensors get concatenated when they have varying size in first dimension. """ outputs = [ { "foo": torch.zeros(4, 5) }, { "foo": torch.zeros(8, 5) }, { "foo": torch.zeros(3, 5) }, ] result = Result.gather(outputs) assert isinstance(result["foo"], torch.Tensor) assert list(result["foo"].shape) == [15, 5] def test_result_gather_scalar(): """ Test that 0-dim tensors get gathered and stacked correctly. """ outputs = [ { "foo": torch.tensor(1) }, { "foo": torch.tensor(2) }, { "foo": torch.tensor(3) }, ] result = Result.gather(outputs) assert isinstance(result["foo"], torch.Tensor) assert list(result["foo"].shape) == [3] def test_result_gather_different_shapes(): """ Test that tensors of varying shape get gathered into a list. """ outputs = [ { "foo": torch.tensor(1) }, { "foo": torch.zeros(2, 3) }, { "foo": torch.zeros(1, 2, 3) }, ] result = Result.gather(outputs) expected = [torch.tensor(1), torch.zeros(2, 3), torch.zeros(1, 2, 3)] assert isinstance(result["foo"], list) assert all(torch.eq(r, e).all() for r, e in zip(result["foo"], expected)) def test_result_gather_mixed_types(): """ Test that a collection of mixed types gets gathered into a list. """ outputs = [ { "foo": 1.2 }, { "foo": ["bar", None] }, { "foo": torch.tensor(1) }, ] result = Result.gather(outputs) expected = [1.2, ["bar", None], torch.tensor(1)] assert isinstance(result["foo"], list) assert result["foo"] == expected def test_result_retrieve_last_logged_item(): result = Result() result.log('a', 5., on_step=True, on_epoch=True) assert result['a_epoch'] == 5. assert result['a_step'] == 5. assert result['a'] == 5.