# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from pytorch_lightning import Callback, Trainer from tests.helpers.boring_model import BoringModel @pytest.mark.parametrize("single_cb", [False, True]) def test_train_step_no_return(tmpdir, single_cb): """ Tests that only training_step can be used """ class CB(Callback): def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): d = outputs[0][0] assert 'minimize' in d def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): assert 'x' in outputs def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): assert 'x' in outputs def on_train_epoch_end(self, trainer, pl_module, outputs): d = outputs[0] assert len(d) == trainer.num_training_batches class TestModel(BoringModel): def on_train_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None: d = outputs[0][0] assert 'minimize' in d def on_validation_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None: assert 'x' in outputs def on_test_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None: assert 'x' in outputs def on_train_epoch_end(self, outputs) -> None: d = outputs[0] assert len(d) == self.trainer.num_training_batches model = TestModel() trainer = Trainer( callbacks=CB() if single_cb else [CB()], default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=1, log_every_n_steps=1, weights_summary=None, ) assert any(isinstance(c, CB) for c in trainer.callbacks) results = trainer.fit(model) assert results