# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from abc import ABC from collections import OrderedDict import torch class TrainingStepVariations(ABC): """ Houses all variations of training steps """ test_step_inf_loss = float('inf') def training_step(self, batch, batch_idx, optimizer_idx=None): """Lightning calls this inside the training loop""" self.training_step_called = True # forward pass x, y = batch x = x.view(x.size(0), -1) y_hat = self(x) # calculate loss loss_train = self.loss(y, y_hat) log_train = loss_train # alternate between tensors and scalars for "log" and "progress_bar" if batch_idx % 2 == 0: log_train = log_train.item() output = OrderedDict({ 'loss': loss_train, 'progress_bar': { 'some_val': log_train * log_train }, 'log': { 'train_some_val': log_train * log_train }, }) return output def training_step__inf_loss(self, batch, batch_idx, optimizer_idx=None): output = self.training_step(batch, batch_idx, optimizer_idx) if batch_idx == self.test_step_inf_loss: if isinstance(output, dict): output['loss'] *= torch.tensor(math.inf) # make loss infinite else: output /= 0 return output def training_step__multiple_dataloaders(self, batch, batch_idx, optimizer_idx=None): """Training step for multiple train loaders""" assert isinstance(batch, dict) assert len(batch) == 2 assert 'a' in batch and 'b' in batch # forward pass x, y = batch['a'] x = x.view(x.size(0), -1) y_hat = self(x) # calculate loss loss_val = self.loss(y, y_hat) log_val = loss_val # alternate between tensors and scalars for "log" and "progress_bar" if batch_idx % 2 == 0: log_val = log_val.item() output = OrderedDict({ 'loss': loss_val, 'progress_bar': { 'some_val': log_val * log_val }, 'log': { 'train_some_val': log_val * log_val }, }) return output