# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from unittest.mock import Mock import torch from lightning.fabric import Fabric from lightning.pytorch.demos.boring_classes import BoringModel, ManualOptimBoringModel def test_fabric_boring_lightning_module_automatic(): """Test that basic LightningModules written for 'automatic optimization' work with Fabric.""" fabric = Fabric(accelerator="cpu", devices=1) module = BoringModel() parameters_before = deepcopy(list(module.parameters())) optimizers, _ = module.configure_optimizers() dataloader = module.train_dataloader() model, optimizer = fabric.setup(module, optimizers[0]) dataloader = fabric.setup_dataloaders(dataloader) batch = next(iter(dataloader)) output = model.training_step(batch, 0) fabric.backward(output["loss"]) optimizer.step() assert all(not torch.equal(before, after) for before, after in zip(parameters_before, model.parameters())) def test_fabric_boring_lightning_module_manual(): """Test that basic LightningModules written for 'manual optimization' work with Fabric.""" fabric = Fabric(accelerator="cpu", devices=1) module = ManualOptimBoringModel() parameters_before = deepcopy(list(module.parameters())) optimizers, _ = module.configure_optimizers() dataloader = module.train_dataloader() model, optimizer = fabric.setup(module, optimizers[0]) dataloader = fabric.setup_dataloaders(dataloader) batch = next(iter(dataloader)) model.training_step(batch, 0) # .backward() and optimizer.step() happen inside training_step() assert all(not torch.equal(before, after) for before, after in zip(parameters_before, model.parameters())) def test_fabric_call_lightning_module_hooks(): """Test that `Fabric.call` can call hooks on the LightningModule.""" class HookedModel(BoringModel): def on_train_start(self): pass def on_my_custom_hook(self, arg, kwarg=None): pass fabric = Fabric(accelerator="cpu", devices=1) module = Mock(wraps=HookedModel()) _ = fabric.setup(module) _ = fabric.setup(module) # shouldn't add module to callbacks a second time assert fabric._callbacks == [module] fabric.call("on_train_start") module.on_train_start.assert_called_once_with() fabric.call("on_my_custom_hook", 1, kwarg="test") module.on_my_custom_hook.assert_called_once_with(1, kwarg="test")