# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import pytest import torch from torch import nn from pytorch_lightning import Trainer from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.utilities import _TPU_AVAILABLE from tests.helpers.boring_model import BoringModel from tests.helpers.utils import pl_multi_process_test class WeightSharingModule(BoringModel): def __init__(self): super().__init__() self.layer_1 = nn.Linear(32, 10, bias=False) self.layer_2 = nn.Linear(10, 32, bias=False) self.layer_3 = nn.Linear(32, 10, bias=False) self.layer_3.weight = self.layer_1.weight def forward(self, x): x = self.layer_1(x) x = self.layer_2(x) x = self.layer_3(x) return x @pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_resume_training_on_cpu(tmpdir): """ Checks if training can be resumed from a saved checkpoint on CPU""" # Train a model on TPU model = BoringModel() trainer = Trainer( checkpoint_callback=True, max_epochs=1, tpu_cores=8, ) trainer.fit(model) model_path = trainer.checkpoint_callback.best_model_path # Verify saved Tensors are on CPU ckpt = torch.load(model_path) weight_tensor = list(ckpt["state_dict"].values())[0] assert weight_tensor.device == torch.device("cpu") # Verify that training is resumed on CPU trainer = Trainer( resume_from_checkpoint=model_path, checkpoint_callback=True, max_epochs=1, default_root_dir=tmpdir, ) trainer.fit(model) assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" @pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_if_test_works_after_train(tmpdir): """ Ensure that .test() works after .fit() """ # Train a model on TPU model = BoringModel() trainer = Trainer(max_epochs=1, tpu_cores=8, default_root_dir=tmpdir, fast_dev_run=True) trainer.fit(model) assert trainer.test(model) == 1 @pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_weight_tying_warning(tmpdir, capsys=None): """ Ensure a warning is thrown if model parameter lengths do not match post moving to device. """ model = WeightSharingModule() trainer = Trainer(checkpoint_callback=True, max_epochs=1, tpu_cores=1) with pytest.warns(UserWarning, match=r'The model layers do not match after moving to the target device.'): result = trainer.fit(model) assert result @pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_if_weights_tied(tmpdir, capsys=None): """ Test if weights are properly tied on `on_post_move_to_device`. Ensure no warning for parameter mismatch is thrown. """ class Model(WeightSharingModule): def on_post_move_to_device(self): self.layer_3.weight = self.layer_1.weight model = Model() trainer = Trainer(checkpoint_callback=True, max_epochs=1, tpu_cores=1) with pytest.warns(UserWarning) as warnings: result = trainer.fit(model) assert result assert not list(filter(lambda x: 'The model layers do not match' in str(x), warnings.list)) assert trainer.test(model) == 1