# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from lightning_fabric.utilities.distributed import _AllGather from lightning_fabric.utilities.seed import seed_everything from pytorch_lightning import Trainer from pytorch_lightning.demos.boring_classes import BoringModel from tests_pytorch.core.test_results import spawn_launch from tests_pytorch.helpers.runif import RunIf def all_gather_ddp_spawn_fn(strategy): rank = strategy.local_rank world_size = strategy.num_processes tensor1 = torch.ones(8, requires_grad=True) tensor2 = torch.ones((8, 16, 32), requires_grad=True) tensor1_gathered = _AllGather.apply(tensor1) tensor2_gathered = _AllGather.apply(tensor2) tensor1_gathered = tensor1_gathered * rank tensor2_gathered = tensor2_gathered * rank tensor1_gathered.sum().backward() tensor2_gathered.sum().backward() grad1 = torch.zeros_like(tensor1.grad).fill_(torch.arange(world_size).sum().float()) grad2 = torch.zeros_like(tensor2.grad).fill_(torch.arange(world_size).sum().float()) assert torch.allclose(grad1, tensor1.grad) assert torch.allclose(grad2, tensor2.grad) @RunIf(skip_windows=True) def test_all_gather_ddp_spawn(): spawn_launch(all_gather_ddp_spawn_fn, [torch.device("cpu")] * 3) @RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True) def test_all_gather_collection(tmpdir): class TestModel(BoringModel): training_epoch_end_called = False def training_epoch_end(self, outputs) -> None: losses = torch.stack([x["loss"] for x in outputs]) gathered_loss = self.all_gather( { "losses_tensor_int": torch.rand(2, 2).int().t(), "losses_tensor_float": torch.rand(2, 2).t(), "losses_np_ndarray": np.array([1, 2, 3]), "losses_bool": [True, False], "losses_float": [0.0, 1.0, 2.0], "losses_int": [0, 1, 2], "losses": losses, "losses_list": [losses, losses], } ) assert gathered_loss["losses_tensor_int"][0].dtype == torch.int32 assert gathered_loss["losses_tensor_float"][0].dtype == torch.float assert gathered_loss["losses_np_ndarray"][0].dtype == torch.int64 # torch.bool can't be all_gathered assert gathered_loss["losses_bool"][0].dtype == torch.uint8 assert gathered_loss["losses_float"][0].dtype == torch.float assert gathered_loss["losses_int"][0].dtype == torch.int assert gathered_loss["losses_list"][0].numel() == 2 * len(losses) assert gathered_loss["losses"].numel() == 2 * len(losses) self.training_epoch_end_called = True seed_everything(42) model = TestModel() limit_train_batches = 8 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1, log_every_n_steps=1, accumulate_grad_batches=2, accelerator="gpu", devices=2, strategy="ddp", enable_progress_bar=False, enable_model_summary=False, ) trainer.fit(model) assert model.training_epoch_end_called @RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True) def test_all_gather_sync_grads(tmpdir): class TestModel(BoringModel): training_step_called = False def training_step(self, batch, batch_idx): self.training_step_called = True tensor = torch.rand(2, 2, requires_grad=True, device=self.device) gathered_tensor = self.all_gather(tensor, sync_grads=True) assert gathered_tensor.shape == torch.Size([2, 2, 2]) loss = gathered_tensor.sum() return loss model = TestModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, accelerator="gpu", devices=2, strategy="ddp", enable_progress_bar=False, enable_model_summary=False, ) trainer.fit(model) assert model.training_step_called